Chinese Journal of Organic Chemistry >
Reaction Mechanism for the Alkoxylation of a Silyl Ligand in the Silyl- (silylene)ruthenium Complex: A Density Functional Theory Study
Received date: 2014-10-16
Revised date: 2014-12-10
Online published: 2015-01-05
Supported by
Project supported by the National Natural Science Foundation of China (No. 21203166) and the Food Science and Engineering of Most Important Discipline of Zhejiang Province (No. JYTsp2014111).
The mechanism for the reaction of a silyl(silylene) ruthenium complex Cp*Ru(CO)(=SiMes2)SiMe3 with methanol was investigated via the density functional theory (DFT) calculations. The mechanism includes four steps. (1) The reaction initiates via the 1,2-addition of methanol to the Ru=Si bond, followed by Mes2Si(OMe)H elimination to give Cp*Ru(CO)SiMe3; (2) A methyl group of the silyl ligand migrates to Ru center via 1,2-Me migration, together with 1,2-addition of methanol, which is followed by the CH4 release to form Cp*Ru(CO)Si(OMe)Me2; (3) Step (2) repeats twice to give the fully alkoxylated product Cp*Ru(CO)Si(OMe)3. (4) Coordination of isonitrile affords final product Cp*Ru(CO)(CNtBu)Si(OMe)3. The first step involving the 1,2-addition of methanol to the Ru=Si double bond is the rate-determining step for the whole reaction with a free energy barrier of 35.3 kcal/mol. The mechanism for the reaction of a silyl(germylene)ruthenium complex with methanol was also considered. The rate-determining step has relatively lower barrier of 31.8 kcal/mol in contrast to the silyl(silylene) ruthenium complex.
Key words: DFT calculation; reaction mechanism; silylene complex; germylene complex
Zhou Li , Li Yang , Lin Furong , Tian Diying , Lei Qunfang , Fang Wenjun , Xie Hujun . Reaction Mechanism for the Alkoxylation of a Silyl Ligand in the Silyl- (silylene)ruthenium Complex: A Density Functional Theory Study[J]. Chinese Journal of Organic Chemistry, 2015 , 35(3) : 698 -704 . DOI: 10.6023/cjoc201410023
[1] Straus, D. A.; Zhang, C.; Quimbita, G. E.; Grumbine, S. D.; Heyn, R. H.; Tilley, T. D.; Rheingold, A. L.; Geib, S. J. J. Am. Chem. Soc. 1990, 112, 2673.
[2] Straus, D. A.; Tilley, T. D. J. Am. Chem. Soc. 1987, 109, 5872.
[3] Waterman, R.; Hayes, P. G.; Tilley, T. D. Acc. Chem. Res. 2007, 40, 712.
[4] (a) Calimano, E.; Tilley, T. D. J. Am. Chem. Soc. 2008, 130, 9226. (b) Calimano, E.; Tilley, T. D. J. Am. Chem. Soc. 2009, 131, 11161. (c) Calimano, E.; Tilley, T. D. Organometallics 2010, 29, 1680. (d) Fasulo, M. E.; Glaser, P. B.; Tilley, T. D. Organometallics 2011, 30, 5524. (e) Fasulo, M. E.; Tilley, T. D. Organometallics 2012, 31, 5049. (f) Fasulo, M. E.; Lipke, M. C.; Tilley, T. D. Chem. Sci. 2013, 4, 3882.
[5] Ueno, K.; Tobita, H.; Shimoi, M.; Ogino, H. J. Am. Chem. Soc. 1988, 110, 4092.
[6] (a) Ogino, H. Chem. Rec. 2002, 2, 291. (b) Okazaki, M.; Tobita, H.; Ogino, H. Dalton Trans. 2003, 493.
[7] Watanabe, T.; Hashimoto, H.; Tobita, H. Angew. Chem., Int. Ed. 2004, 43, 218.
[8] Watanabe, T.; Hashimoto, H.; Tobita, H. J. Am. Chem. Soc. 2006, 128, 2176.
[9] Watanabe, T.; Hashimoto, H.; Tobita, H. J. Am. Chem. Soc. 2007, 129, 11338.
[10] Ochiai, M.; Hashimoto, H.; Tobita, H. Organometallics 2012, 31, 527.
[11] Xie, H.; Lin, Z. Organometallics 2014, 33, 892.
[12] Hashimoto, H.; Sato, J.; Tobita, H. Organometallics 2009, 28, 3963.
[13] (a) Becke, A. D. Phys. Rev. A 1988, 38, 3098. (b) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. (c) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
[14] (a) Arnold Jr, F. P. Organometallics 1999, 18, 4800. (b) Zhang, X. H.; Chung, L. W.; Lin, Z.; Wu, Y. D. J. Org. Chem. 2008, 73, 820. (c) Chung, L. W.; Wu, Y.-D.; Trost, B. M.; Ball, Z. T. A. J. Am. Chem. Soc. 2003, 125, 11578.
[15] (a) Xie, H.; Lin, F.; Yang, L.; Chen, X.; Ye, X.; Tian, X.; Lei, Q.; Fang, W. J. Organomet. Chem. 2013, 745-746, 417. (b) Xie, H.; Lin, F.; Lei, Q.; Fang, W. Organometallics 2013, 32, 6957. (c) Ye, X.; Yang, L.; Li, Y.; Huang, J.; Zhou, L.; Lei, Q.; Fang, W.; Xie, H. Eur. J. Inorg. Chem. 2014, 1502.
[16] (a) Check, C. E.; Faust, T. O.; Bailey, J. M.; Wright, B. J.; Gilbert, T. M.; Sunderlin, L. S. J. Phys. Chem. A 2001, 105, 8111. (b) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299.
[17] Höllwarth, A.; Böhme, M.; Dapprich, S.; Ehlers, A. W.; Gobbi, A.; Jonas, V.; Köhler, K. F.; Stegmann, R.; Veldkamp, A.; Frenking, G. Chem. Phys. Lett. 1993, 208, 237.
[18] Ehlers, A. W.; Böhme, M.; Dapprich, S.; Gobbi, A.; Höllwarth, A.; Jonas, V.; Köhler, K. F.; Stegmann, R.; Veldkamp, A.; Frenking, G. Chem. Phys. Lett. 1993, 208, 111.
[19] (a) Fukui, K. J. Phys. Chem. 1970, 74, 4161. (b) Fukui, K. Acc. Chem. Res. 1981, 14, 363.
[20] (a) Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83, 735. (b) Reed, A. E.; Weinhold, F. J. Chem. Phys. 1985, 83, 1736. (c) Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899.
[21] (a) Barone V.; Cossi, M. J. Phys. Chem. A 1998, 102, 1995. (b) Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. J. Comput. Chem. 2003, 24, 669.
[22] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, Jr. J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford CT, 2009.
/
〈 |
|
〉 |