Chinese Journal of Organic Chemistry >
Enantiospecific Allylic Alkylation of Substituted Hydrazines with Allylic Alcohols
Received date: 2014-12-29
Revised date: 2015-01-17
Online published: 2015-01-20
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21472178 and 21232007), the National Key Basic Research Program of China (No. 2014CB931800), and the Natural Science Foundation of Anhui Province of China (No. 1408085MB24).
Unprecedented enantiospecific allylic alkylation of substituted hydrazines with allylic alcohols has been developed. A range of substituted hydrazines underwent palladium/racemic 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl (BINAP)/boric acid-catalyzed allylic alkylation with highly enantioenriched allylic alcohols at room temperature and the reaction proceeded in a highly regioselective fashion with greater than 95% retention of configuration to afford allylic hydrazines with high enantiopurity. Moreover, only water was generated as an environmentally benign byproduct.
Key words: alcohols; hydrazines; allylic alkylation; palladium; enantiospecificity
Xu Jing-Kun , Gu Yonghong , Tian Shi-Kai . Enantiospecific Allylic Alkylation of Substituted Hydrazines with Allylic Alcohols[J]. Chinese Journal of Organic Chemistry, 2015 , 35(3) : 618 -624 . DOI: 10.6023/cjoc201412049
[1] For reviews, see: (a) Tsuji, J. Acc. Chem. Res. 1969, 2, 144. (b) Trost, B. M. Tetrahedron 1977, 33, 2615. (c) Trost, B. M.; Van Vranken, D. L. Chem. Rev. 1996, 96, 395. (d) Trost, B. M.; Crawley, M. L. Chem. Rev. 2003, 103, 2921. (e) Kazmaier, U.; Pohlman, M. In Metal-Catalyzed Cross-Coupling Reactions, 2nd ed., Eds.: de Meijere, A.; Diederich, F., Wiley-VCH, Weinheim, 2004, p. 531.
[2] For reviews, see: (a) Muzart, J. Tetrahedron 2005, 61, 4179. (b) Bandini, M. Angew. Chem., Int. Ed. 2011, 50, 994. (c) Sundararaju, B.; Achard, M.; Bruneau, C. Chem. Soc. Rev. 2012, 41, 4467. (d) Bandini, M.; Cera, G.; Chiarucci, M. Synthesis 2012, 44, 504.
[3] (a) Ye, J.; Zhao, J.; Xu, J.; Mao, Y.; Zhang, Y. J. Chem. Commun. 2013, 49, 9761. (b) Wu, H.-B.; Ma, X.-T.; Tian, S.-K. Chem. Commun. 2014, 50, 219.
[4] (a) Ozawa, F.; Okamoto, H.; Kawagishi, S.; Yamamoto, S.; Minami, T.; Yoshifuji, M. J. Am. Chem. Soc. 2002, 124, 10968. (b) Roggen, M.; Carreira, E. M. J. Am. Chem. Soc. 2010, 132, 11917. (c) Mukherjee, P.; Widenhoefer, R. A. Org. Lett. 2010, 12, 1184. For intramolecular substitution, see: (d) Kawai, N.; Abe, R.; Uenishi, J. Tetrahedron Lett. 2009, 50, 6580. (e) Hande, S. M.; Kawai, N.; Uenishi, J. J. Org. Chem. 2009, 74, 244. (f) Kawai, N.; Abe, R.; Matsuda, M.; Uenishi, J. J. Org. Chem. 2011, 76, 2102. (g) Mukherjee, P.; Widenhoefer, R. A. Org. Lett. 2011, 13, 1334. (h) Mukherjee, P.; Widenhoefer, R. A. Angew. Chem., Int. Ed. 2012, 51, 1405.
[5] (a) Vikhe, Y. S.; Hande, S. M.; Kawai, N.; Uenishi, J. J. Org. Chem. 2009, 74, 5174. (b) Mukherjee, P.; Widenhoefer, R. A. Chem.-Eur. J. 2013, 19, 3437. For intramolecular substitution, see: (c) Uenishi, J.; Ohmi, M.; Ueda, A. Tetrahedronn: Asymmetry 2005, 16, 1299. (d) Kawai, N.; Lagrange, J.-M.; Ohmi, M.; Uenishi, J. J. Org. Chem. 2006, 71, 4530. (e) Kawai, N.; Lagrange, J.-M.; Uenishi, J. Eur. J. Org. Chem. 2007, 2808. (f) Uenishi, J.; Vikhe, Y. S.; Kawai, N. Chem. Asian J. 2008, 3, 473. (g) Guérinot, A.; Serra-Muns, A.; Bensoussan, C.; Reymond, S.; Cossy, J. Tetrahedron 2011, 67, 5024. (h) Unsworth, W. P.; Stevens, K.; Lamont, S. G.; Robertson, J. Chem. Commun. 2011, 47, 7659. (i) Ghebreghiorgis, T.; Biannic, B.; Kirk, B. H.; Ess, D. H.; Aponick, A. J. Am. Chem. Soc. 2012, 134, 16307. (j) Ghebreghiorgis, T.; Kirk, B. H.; Aponick, A.; Ess, D. H. J. Org. Chem. 2013, 78, 7664.
[6] Ma, X.-T.; Dai, R.-H.; Zhang, J.; Gu, Y.; Tian, S.-K. Adv. Synth. Catal. 2014, 356, 2984.
[7] Lumbroso, A.; Cooke, M. L.; Breit, B. Angew. Chem., Int. Ed. 2013, 52, 1890.
[8] Tšupova, S.; Mäeorg, U. Org. Lett. 2013, 15, 3381.
[9] (a) Zhang, R.; Durkin, J. P.; Windsor, W. T. Bioorg. Med. Chem. Lett. 2002, 12, 1005. (b) Raja, A.; Lebbos, J.; Kirkpatrick, P. Nat. Rev. Drug Discovery 2003, 1, 857.
[10] For reviews, see: (a) Ragnarsson, U. Chem. Soc. Rev. 2001, 30, 205. (b) Friestad, G. K. Eur. J. Org. Chem. 2005, 3157.
[11] (a) Strick, B. F.; Mundal, D. A.; Thomson, R. J. J. Am. Chem. Soc. 2011, 133, 14252. (b) Lutz, K. E.; Thomson, R. J. Angew. Chem., Int. Ed. 2011, 50, 4437. (c) Gutierrez, O.; Strick, B. F.; Thomson, R. J.; Tantillo, D. J. Chem. Sci. 2013, 4, 3997. (d) Reddel, J. C. T.; Lutz, K. E.; Diagne, A. B.; Thomson, R. J. Angew. Chem., Int. Ed. 2014, 53, 1395.
[12] (a) Yamagishi, T.; Ohnuki, M.; Kiyooka, T.; Masui, D.; Sato, K.; Yamaguchi, M. Tetrahedron: Asymmetry 2003, 14, 3275. (b) Kloetzing, R. J.; Knochel, P. Tetrahedron: Asymmetry 2006, 17, 116. (c) Popa, D.; Marcos, R.; Sayalero, S.; Vidal-Ferran, A.; Pericàs, M. A. Adv. Synth. Catal. 2009, 351, 1539. (d) Yuan, H.; Zhou, Z.; Xiao, J.; Liang, L.; Dai, L. Tetrahedron: Asymmetry 2010, 21, 1874.
[13] (a) Li, H.-H.; Dong, D.-J.; Tian, S.-K. Eur. J. Org. Chem. 2008, 3623. (b) Li, H.-H.; Jin, Y.-H.; Wang, J.-Q.; Tian, S.-K. Org. Biomol. Chem. 2009, 7, 3219. (c) Yang, C.-F.; Shen, C.; Li, H.-H.; Tian, S.-K. Chin. Sci. Bull. 2012, 57, 2377. (d) Tian, Y.; Sui, Y.; Gu, Y.; Tian, S.-K. Adv. Synth. Catal. 2012, 354, 3475. (e) Li, M.-B.; Wang, Y.; Tian, S.-K. Angew. Chem., Int. Ed. 2012, 51, 2968. (f) Wu, X.-S.; Chen, Y.; Li, M.-B.; Zhou, M.-G.; Tian, S.-K. J. Am. Chem. Soc. 2012, 134, 14694. (g) Li, M.-B.; Li, H.; Wang, J.; Liu, C.-R.; Tian, S.-K. Chem. Commun. 2013, 49, 8190. (h) Ma, X.-T.; Wang, Y.; Dai, R.-H.; Liu, C.-R.; Tian, S.-K. J. Org. Chem. 2013, 78, 11071. (i) Wu, X.-S.; Zhou, M.-G.; Chen, Y.; Tian, S.-K. Asian J. Org. Chem. 2014, 3, 711. (j) Wang, T.-T.; Wang, F.-X.; Yang, F.-L.; Tian, S.-K. Chem. Commun. 2014, 50, 3802. (k) Zhou, M.-G.; Zhang, W.-Z.; Tian, S.-K. Chem. Commun. 2014, 50, 14531. (l) Wang, Y.; Li, M.; Ma, X.; Liu, C.; Gu, Y.; Tian, S.-K. Chin. J. Chem. 2014, 32, 741.
[14] Wang, Y.; Xu, J.-K.; Gu, Y.; Tian, S.-K. Org. Chem. Front. 2014, 1, 812.
[15] (a) Bertelsen, S.; Marigo, M.; Brandes, S.; Dinér, P.; Jørgensen, K. A. J. Am. Chem. Soc. 2006, 128, 12973. (b) Wang, J.; Chen, J.; Kee, C. W.; Tan, C.-H. Angew. Chem., Int. Ed. 2012, 51, 2382.
[16] (a) Yang, F.-L.; Ma, X.-T.; Tian, S.-K. Chem.-Eur. J. 2012, 18, 1582. (b) Yang, F.-L.; Tian, S.-K. Angew. Chem., Int. Ed. 2013, 52, 4929. (c) Su, Y.-H.; Wu, Z.; Tian, S.-K. Chem. Commun. 2013, 49, 6528. (d) Zhang, Y.-G.; Liu, X.-L.; He, Z.-Y.; Li, X.-M.; Kang, H.-J.; Tian, S.-K. Chem.-Eur. J. 2014, 20, 2765. (e) Yang, F.-L.; Wang, F.-X.; Wang, T.-T.; Wang, Y.-J.; Tian, S.-K. Chem. Commun. 2014, 50, 2111.
[17] Electrospray ionization (ESI) mass spectrometric analysis of the reaction mixture permitted us to assign intermediate 6 according to the high resolution mass data. HRMS (ESI) calcd for C17H18N2O2SNa (M+Na)+ 337.0981, found 337.0987.
[18] Martin, V. S.; Woodard, S. S.; Katsuki, T.; Yamada. Y.; Ikeda, M.; Sharpless, K. B. J. Am. Chem. Soc. 1981, 103, 6237.
[19] (a) Mäeorg, U.; Bredihhin, A. Org. Lett. 2007, 9, 4975. (b) Zhang, Z.; Wang, M.; Yao, X.; Li, Y.; Tan, J.; Wang, L.; Qiao, W.; Geng, Y.; Liu, Y.; Wang, Q. Eur. J. Med. Chem. 2012, 54, 33.
/
〈 |
|
〉 |