Reviews

Progress of Porphyrin Sensitizers for Dye-Sensitized Solar Cells

  • Gu Chengzhi ,
  • Meng Shuxian ,
  • Feng Yaqing
Expand
  • a School of Chemical Engineering, Tianjin University, Tianjin 300072;
    b School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832000;
    c Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072

Received date: 2014-12-11

  Revised date: 2015-01-05

  Online published: 2015-02-02

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21076147, 21476162) and the National International S&T Cooperation Foundation of China (No. 2012DFG41980).

Abstract

As a core structure of nature photosynthesis, porphyrin has good light, thermal and chemical stability. In the past two decades, porphyin based dye-sensitized solar cells (DSSC) has attracted much attention relevant to global environmental issues. Up to date, they exhibit the best performance with a benchmark efficiency of 13% reported in 2014 for dye-sensitised solar cells. The progress of porphyrins and their derivatives applied in DSSC from the point of view of molecular engineering design correlated with photovoltaic performance is systematically summarized.

Cite this article

Gu Chengzhi , Meng Shuxian , Feng Yaqing . Progress of Porphyrin Sensitizers for Dye-Sensitized Solar Cells[J]. Chinese Journal of Organic Chemistry, 2015 , 35(6) : 1229 -1237 . DOI: 10.6023/cjoc201412018

References

[1] Dresselhaus, M. S.; Thomas, I. L. Nature 2001, 414, 332.
[2] Imahori, H. J. Mater. Chem. 2007, 17, 31.
[3] Goncalves, L. M.; Bermudez, V. Z.; Ribeiro, H. A.; Mendes, A. M. Energy Environ. Sci. 2008, 1, 655.
[4] Nazeeruddin, M. K.; Péchy, P.; Grätzel, M. Chem. Commun. 1997, 18, 1705.
[5] O'Regan, B.; Grätzel, M. Nature 1991, 353, 737.
[6] Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humpbry-Baker, R.; Miiller, E.; Liska, P.; Vlachopoulos, N.; Grätzel, M. J. Am. Chem. Soc. 1993, 115, 6382.
[7] Nazeeruddin, M. K.; Péchy, P.; Renouard, T.; Zakeerddin, S. M.; Humphry-Baker, R.; Comte, P.; Liska, P.; Cevey, L.; Costa, E.; Shklover, V.; Spiccia, L.; Deacon, G. B.; Bignozzi, C. A.; Grätzel, M. J. Am. Chem. Soc. 2001, 123, 1613.
[8] Wang, P.; Zakeeruddin, S. M.; Exnar, I.; Grätzel, M. Chem. Commun. 2002, 2972.
[9] Wang, P.; Zakeeruddin, S. M.; Humphry-Baker, R.; Moser, J. E.; Grätzel, M. Adv. Mater. 2003, 15, 2101.
[10] Wang, P.; Zakeeruddin, S. M.; Moser, J. E.; Nazeeruddin, M. K.; Sekiguchi, T.; Grätzel, M. Nature Mater. 2003, 2, 402.
[11] Grätzel, M. J. Photochem. Photobiol. A 2004, 164, 3.
[12] Nazeeruddin, M. K.; Angelis, F. D.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Takeru, B.; Grätzel, M. J. Am. Chem. Soc. 2005, 127, 16835.
[13] Gao, F. F.; Wang, Y.; Shi, D.; Zhang, J.; Wang, M. K.; Jing, X. Y.; Humphry-Baker, R.; Wang, P.; Zakeeruddin, S. M.; Grätzel, M. J. Am. Chem. Soc. 2008, 130, 10720.
[14] Yu, Q.; Wang, Y. H.; Yi, Z. H.; Zu, N. N.; Zhang, J.; Zhang, M.; Wang, P. ACS NANO 2010, 4, 6032.
[15] Peter, L. M. J. Phys. Chem. Lett. 2011, 2, 1861.
[16] (a) Mishra, A.; Fischer, M. K. R.; Bäuerle, P. B. Angew. Chem., Int. Ed. 2009, 48, 2474. (b) He, J. J.; Chen, S. X.; Wang, T. T.; Zeng, H. P. Chin. J. Org. Chem. 2012, 32, 472 (in Chinese). (何俊杰, 陈舒欣, 王婷婷, 曾和平, 有机化学, 2012, 32, 472.)
[17] (a) Lindsey, J. S. Acc. Chem. Res. 2010, 43, 300. (b) Guo, C. C. Chin. J. Org. Chem. 1991, 11, 416 (in Chinese). (郭灿城, 有机化学, 1991, 11, 416.) (c) Pan, J. G.; He, M. W. Chin. J. Org. Chem. 1993, 13, 533 (in Chinese). (潘继刚, 何明威, 有机化学, 1993, 13, 533.)
[18] (a) Wu, D.; Shen, Z.; Xue, Z. L.; You, X. Z. Chin. J. Inorg. Chem. 2007, 23, 1 (in Chinese). (吴迪, 沈珍, 薛兆历, 游效曾, 无机化学学报, 2007, 23, 1.) (b) Li, Z.; Jia, C. Y.; Wan, Z. Q. Prog. Chem. 2011, 23, 1014 (in Chinese). (李孜, 贾春阳, 万中全, 化学进展, 2011, 23, 1014.) (c) Tang, Y. Y.; Mei, Q. B.; Xu, Z. J.; Lin, Q. D. Prog. Chem. 2011, 23, 1915 (in Chinese). (汤雅芸, 梅群波, 徐志杰, 凌启淡, 化学进展, 2011, 23, 1915.)
[19] Imahori, H. Key Eng. Mater. 2011, 451, 29.
[20] (a) Li, L. L.; Diau, E. W. Chem. Soc. Rev. 2013, 42, 291. (b) Urbani, M.; Grätzel, M.; Nazeeruddin, M. K.; Torres, T. Chem. Rev. 2014, 114, 12330.
[21] Kay, A.; Grätzel, M. J. Phys. Chem. 1993, 97, 6272.
[22] Nazeeruddin, M. K.; Humphry-Baker, R.; Officer, D. L.; Campbell, W. M.; Burrell, A. K.; Grätzel, M. Langmuir 2004, 20, 6514.
[23] Wang, Q.; Campbell, W. M.; Bonfantani, E. E.; Jolley, K. W.; Officer, D. L.; Walsh, P. J.; Gordon, K.; Humphry-Baker, R.; Nazeeruddin, M. K.; Grätzel, M. J. Phys. Chem. B 2005, 109, 15397.
[24] Campbell, W. M.; Jolley, K. W.; Wagner, P.; Wagner, K.; Walsh, P. J.; Gordon, K. C.; Mende, L. S.; Nazeeruddin, M. K.; Wang, Q.; Grätzel, M.; Officer, D. L. J. Phys. Chem. C 2007, 111, 11760.
[25] Mishra, A.; Fischer, M. K. R.; Bäuerle, P. Angew. Chem., Int. Ed. 2009, 48, 2474.
[26] Lin, C. Y.; Lo, C. F.; Luo, L. Y.; Lu, H. P.; Hung, C. S.; Diau, E. W. G. J. Phys. Chem. C 2009, 113, 755.
[27] Liu, Y. J.; Xiang, N.; Feng, X. M.; Shen, P.; Zhou, W. P.; Weng, C.; Zhao, B.; Tan, S. T. Chem. Commun. 2009, 18, 2499.
[28] Ma, R.; Guo, P.; Cui, H. J.; Zhang, X. X.; Nazeeruddin, M. K.; Grätzel, M. J. Phys. Chem. A 2009, 113, 10119.
[29] Tanaka, M.; Hayashi, S.; Eu, S.; Umeyama, T.; Matano, Y.; Imahori, H. Chem. Commun. 2007, 2069.
[30] Hayashi, S.; Tanaka, M.; Hayashi, H.; Eu, S.; Umeyama, T.; Matano, Y.; Araki, Y.; Imahori, H. J. Phys. Chem. C 2008, 112, 15576.
[31] Hayashi, S.; Matsubara, Y.; Eu, S.; Hayashi, H.; Umeyama, T.; Matano, Y.; Imahori, H. Chem. Lett. 2008, 37, 846.
[32] Eu, S.; Hayashi, S.; Umeyama, T.; Matano, Y.; Araki, Y.; Imahori, H. J. Phys. Chem. C 2008, 112, 4396.
[33] Park, J. K.; Chen, J. P.; Lee, H. R.; Park, S. W.; Shinokubo, H.; Osuka, A.; Kim, D. J. Phys. Chem. C 2009, 113, 21956.
[34] Mozer, A. J.; Griffith, M. J.; Tsekouras, G.; Wagner, P.; Wallace, G. G.; Mori, S.; Sunahara, K.; Miyashita, M.; Earles, J. C.; Gordon, K. C.; Du, L.; Katoh, R.; Furube, A.; Officer, D. L. J. Am. Chem. Soc. 2009, 131, 15621.
[35] (a) Liu, P. P.; Feng, Y. Q.; Gu, C. Z.; Meng, S. X.; Zhang, B. Chin. Chem. Lett. 2012, 23(5), 505. (b) Yan, J. Y.; Feng, Y. Q.; Peng, X.; Li, Y. C.; Zhang, N. N.; Li, X. G.; Zhang, B. Tetrahedron Lett. 2013, 54, 7198. (c) Zhang, N. N.; Feng, Y. Q.; Li, Y. C.; Peng, X.; Gu, C. Z.; Xue, X. D.; Yan, J. Y.; Chen, Q. L.; Li, X. G.; Zhang, B. New J. Chem. 2013, 37, 1134. (d) Xue, X. D.; Zhang, W. H.; Feng, Y. Q.; Zhang, N. N.; Ju, C. G.; Peng, X.; Yang, Y. B.; Zhang, B. RSC Adv. 2014, 4, 8894. (e) Zeng, Z.; Zhang, B.; Li, C. J.; Peng, X.; Liu, X. J.; Meng, S. X.; Feng, Y. Q. Dyes Pigm. 2014, 100, 278,
[36] Liu, X. J.; Li, C. J.; Peng, X.; Zhou, Y. Z.; Zeng, Z.; Li, Y. C.; Zhang, T. Y.; Zhang, B.; Dong, Y.; Sun, D. M.; Cheng, P.; Feng, Y. Q. Dyes Pigm. 2013, 98, 181.
[37] Lee, C. W.; Lu, H. P.; Lan, C. M.; Huag, Y. L.; Liang, Y. R.; Yen, W. N.; Liu, Y. C.; Lin, Y. S.; Diau, E. W. G.; Yeh, C. Y. Chem. Eur. J. 2009, 15, 1403.
[38] Lin, C. Y.; Lo, C. F.; Luo, L. Y.; Lu, H. P.; Hung, C. S.; Diau, E. W. G. J. Phys. Chem. C 2009, 113, 755.
[39] Lu, H. P.; Mai, C. L.; Tsia, C. Y.; Hsu, S. J.; Hsieh, C. P.; Chiu, C. L.; Yeh, C. Y.; Diau, E. W. G. Phys. Chem. Chem. Phys. 2009, 11, 10270.
[40] Lin, C. Y.; Wang, Y. C.; Hsu, S. J.; Lo, C. F.; Diau, E. W. G. J. Phys. Chem. C 2010, 114, 687.
[41] Mai, C. L.; Huang, W. K.; Lu, H. P.; Lee, C. W.; Chiu, C. L.; Liang, Y. R.; Diau, E. W. G.; Yeh, C. Y. Chem. Commun. 2010, 46, 809.
[42] Hsieh, C. P.; Lu, H. P.; Chiu, C. L.; Lee, C. W.; Chung, S. H.; Mai, C. L.; Yen, W. N.; Hsu, S. J.; Diau, E. W. G.; Yeh, C. Y. J. Mater. Chem. 2010, 20, 1127.
[43] Wu, S. L.; Lu, H. P.; Yu, H. T.; Chuang, S. H.; Chiu, C. L.; Lee, C. W.; Diau, E. W. G.; Yeh, C. Y. Energy Environ. Sci., 2010, 3, 949.
[44] Sanchis, T. R.; Guo, B. C.; Wu, H. P.; Pan, T. Y.; Lee, H. W.; Raga, S.; Santiago, F. F.; Bisquert, J.; Yeh, C. Y.; Diau, E. W. G. Chem. Commun. 2012, 48, 4368.
[45] Yella, A.; Lee, H. W.; Tsao, H. N.; Yi, C. Y.; Chandiran, A. K.; Nazeeruddin, M. K.; Diau, E. W. G.; Yeh, C. Y.; Zakeeruddin, S. M.; Grätzel, M. Science 2011, 334, 629.
[46] Luo, J.; Xu, M. F.; Li, R. Z.; Huang, K. W.; Jiang, C. Y.; Qi, Q. B.; Zeng, W. D.; Zhang, J.; Chi, C. Y.; Wang, P.; Wu, J. S. J. Am. Chem. Soc. 2014, 136, 265.
[47] Wang, C. L.; Hu, J. Y.; Wu, C. H.; Kuo, H. H.; Chang, Y. C.; Lan, Z. J.; Wu, H. P.; Diau E. W. G.; Lin. C. Y. Energy Environ. Sci. 2014, 7, 1392.
[48] Yella, A.; Mai, C. L.; Zakeeruddin, S. M.; Chang, S. N.; Hsieh, C. H.; Yeh, C. Y.; Grätzel, M. Angew. Chem., Int. Ed. 2014, 53, 2973.
[49] Mathew, S.; Yella, A.; Gao, P.; Humphry-Baker, R.; Curchod, B. F. E.; Ashari-Astani, N.; Tavernelli, I.; Rothlisberger, U.; Nazeeruddin, M. K.; Grätzel, M. Nature Chem. 2014, 6, 242.
[50] (a) Liu, B.; Zhu, W. H.; Wang, Y. Q.; Wu, W. J.; Li, X.; Chen, B. Q.; Long, Y. T.; Xie, Y. S. J. Mater. Chem. 2012, 22, 7434. (b) Chen, B.; Li, X.; Wu, W. J.; Zha, Q. Z.; Xie, Y. S. RSC Adv. 2014, 4, 10439. (c) Wang, Y. Q.; Li, X.; Liu, B.; Wu, W. J.; Zhu, W. H.; Xie, Y. S. RSC Adv. 2013, 3, 14780. (d) Wang, Y. Q.; Xu, L.; Wei, X. D.; Li, X.; Ågren, H.; Wu, W. J.; Xie, Y. S. New J. Chem. 2014, 38, 3227. (e) Wang, Y. Q.; Chen, B.; Wu, W. J.; Li, X.; Zhu, W. H.; Tian, H.; Xie, Y. S. Angew. Chem., Int. Ed. 2014, 53, 10779. (f) Sun, X.; Wang, Y. Q.; Li, X.; Ågren, H.; Zhu, W. H.; Tian, H.; Xie, Y. S. Chem. Commun. 2014, 50, 15609.
[51] Johansson, V.; Gibbings, L. E.; Clarke, T.; Gorlov, M.; Andersson, G. G.; Kloo, L. Phys. Chem. Chem. Phys. 2014, 16, 711.

Outlines

/