Notes

Solvent-Free Synthesis of Spiro Heterobicyclic Derivatives under Ultrasonic Irradiation with Dawson-Type Tungsten Vanado Phosphoric Heteropoly Acid as Catalyst

  • Xu Zhaohui ,
  • Tu Yuanhong
Expand
  • Chemistry and Chemical Engineering Department, Jiangxi Normal University, Nanchang 330027

Received date: 2014-11-06

  Revised date: 2015-01-19

  Online published: 2015-02-05

Supported by

Project supported by the National Science and Technology Project (No. 2001BA323C) and the Graduate Innovation Foundation of Jiangxi Province (No. YC10A51).

Abstract

Twelve kinds of spiro heterobicyclic derivatives were synthesized by the three component condensation reaction of aldehydes with urea and 2,2-dimethyl-1,3-dioxane-4,6-dione or barbituric acid derivatives using dawson-type Tungsten Vanado phosphoric heteropolyacid as catalyst, under solvent-free and ultrasonic irradiation. The results indicate that the yields ranged from 83% to 94% when using 5% (molar fraction) dawson-type Tungsten Vanado phosphoric heteropolyacid and reacting at 80 ℃ for 15~45 min. Furthermore, a proposed reaction mechanism for the reaction catalyzed by dawson-type Tungsten Vanado phosphoric heteropolyacid was speculated. The main advantages of the present procedure were milder conditions, shorter reaction time and higher yields. Further study showed that dawson-type Tungsten Vanado phosphoric heteropolyacid was environmentally friendly and reused for four times without any noticeable decrease in the catalytic activity.

Cite this article

Xu Zhaohui , Tu Yuanhong . Solvent-Free Synthesis of Spiro Heterobicyclic Derivatives under Ultrasonic Irradiation with Dawson-Type Tungsten Vanado Phosphoric Heteropoly Acid as Catalyst[J]. Chinese Journal of Organic Chemistry, 2015 , 35(6) : 1357 -1362 . DOI: 10.6023/cjoc201411007

References

[1] Wessjohann, L. A.; Rivera, D. G.; Vercillo, O. E. Chem. Rev. 2009, 109, 796.
[2] Chen, Z. W.; Bi, J. H.; Su, W. K. Chin. J. Chem. 2013, 31, 507.
[3] Tong, G. J.; Xu, H. W.; Fan, W.; Jiang, B.; Wang, S. L.; Tu, S. J. Chin. J. Chem. 2013, 31, 1034.
[4] Xu, Z.-H. Chin. J. Org. Chem. 2014, 34, 1687 (in Chinese). (许招会, 有机化学, 2014, 34, 1687.)
[5] Yang, D.-L.; Li, J.-R.; Sun, K.-N. Chin. J. Org. Chem. 2013, 33, 2341 (in Chinese). (杨得利, 李家荣, 孙克宁, 有机化学, 2013, 33, 2341.)
[6] Francesco, E.; Salvatore, G.; Ornelio, R. Tetrahedron Lett. 2011, 52, 568.
[7] Mokrosz, J. L.; Psluchowska, M. H.; Sznler, E.; Drozdz, B. Arch. Chem. 1989, 322, 231.
[8] Alashmawi, M. I.; Ghoneim, K. M.; Khalifa, O. Pharmaze 1980, 35, 591.
[9] Arimoto, H.; Hayakawa, I.; Kuramoto, M.; Uemure, D. Tetrahedron Lett. 1998, 36, 861.
[10] Tokuyama, T.; Uenoyama, K.; Brown, G.; Daly, J. W.; Uemere, D. Tetrahedron Lett. 1999, 37, 387.
[11] Srinivasa, R. J.; Divya, V.; Shubha, J. J. Chem. Pharm. Res. 2012, 4, 2373.
[12] Dipak, P.; Debajyoti, B.; Mukut, G.; Hu, W. H. Mol. Diversity 2011, 15, 257.
[13] Naser, M.; Khalil, P.; Masoud, B.; Soudabeh, K. Asian J. Chem. 2013, 25, 3373.
[14] Atwal, K. S.; Rovnyak, G. C.; Oreilly, B. C.; Schwartz, J. J. Org Chem. 1989, 54, 5898.
[15] Shaabani, A.; Bazgir, A. Tetrahedron Lett. 2004, 45, 2545.
[16] Ahmad, S.; Ayoob, B. Tetrahedron Lett. 2004, 45, 2575.
[17] Ahmad, H.; Ayoob, B.; Hamid, R. B. Mol. Diversity 2004, 8, 141.
[18] Feng, R.; Zhao, Y. Y.; Bao, C. G. Ultrason. Sonochem. 1997, 4, 183.
[19] Mikkol, J. P.; Salmi, T. Catal. Today 2001, 64, 271.
[20] Ambulgekar, G. V.; Bhanage, B. M.; Samant, S. D. Tetrahedron Lett. 2005, 46, 2483.
[21] Xu, Z.-H.; Liao, W.-L.; Luo, N.-H.; Liu, D.-Y.; Wang, S. Chin. J. Chem. Res. Appl. 2006, 18, 199 (in Chinese). (许招会, 廖维林, 罗年华, 刘德勇, 王甡, 化学研究与应用, 2006, 18, 199.)
[22] Xu, Z.-H.; Xiong, B.; Liao, X.-M.; Liao, W.-L. Chin. J. Deterg. Cosmet. 2006, 29(2), 19 (in Chinese). (许招会, 熊斌, 李小明, 廖维林, 日用化学品科学, 2006, 29(2), 19.)
[23] Xu, Z.-H.; Lin, C.-H. Chin. J. Org. Chem. 2013, 33, 1540 (in Chinese). (许招会, 林春花, 有机化学, 2013, 33, 1540.)
[24] Yan, N.; Xiong, B.; Liao, W.-L.; Xu, Z.-H. Chin. J. Org. Chem. 2010, 30, 1391 (in Chinese). (严楠, 熊斌, 廖维林, 许招会, 有机化学, 2010, 30, 1391.)

Outlines

/