Chinese Journal of Organic Chemistry >
Synthetic Progress of Indoxamycin Family
Received date: 2015-01-05
Revised date: 2015-02-03
Online published: 2015-01-05
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21472167, 21202144) and the Research Fund For the Doctoral Program of Higher Education of China (No. 20120101120087).
Indoxamycins A~F represent a novel class of polyketides isolated from the salin cultures of actinomycetes, which contain a common sterically congested [5,5,6] tricyclic cage-like structure featuring six contiguous stereogenic centers. Indoxamycins A and F were reported to exhibit significant growth-inhibition activity against HT-29 tumor cell lines. This review summarizes the synthetic progress towards indoxamycin family members both by the Carreira and Ding groups.
Key words: indoxamycins; enynes; rearrangement; tandem reaction; total synthesis
He Chi , Ding Hanfeng . Synthetic Progress of Indoxamycin Family[J]. Chinese Journal of Organic Chemistry, 2015 , 35(4) : 760 -769 . DOI: 10.6023/cjoc201501002
[1] Fenical, W.; Jensen, P. R. Nat. Chem. Biol. 2006, 2, 666.
[2] Sato, S.; Iwata, F.; Mukai, T.; Yamada, S.; Takeo, J.; Abe, A.; Kawahara, H. J. Org. Chem. 2009, 74, 5502.
[3] (a) Jeker, O. F.; Carreira, E. M. Angew. Chem., Int. Ed. 2012, 51, 3474.
(b) Jeker, O. F. Ph.D. Dissertation, ETH, Zurich (Switzerland), 2013.
[4] (a) He, C.; Zhu, C.; Dai, Z.; Tseng, C.-C.; Ding, H. Angew. Chem., Int. Ed. 2013, 52, 13256.
(b) He, C.; Zhu, C.; Ding, H. Synlett 2014, 25, 1487.
(c) He, C.; Zhu, C.; Wang, B. N.; Ding, H. Chem. Eur. J. 2014, 20, 15053.
[5] For reviews on tandem reaction, see:
(a) Bunce, R. A. Tetrahedron 1995, 51, 13103.
(b) Nicolaou, K. C.; Montagnon, T.; Snyder, S. A. Chem. Commun. 2003, 551.
(c) Padwa, A. Pure Appl. Chem. 2004, 76, 1933.
[6] For selected enantioselective Alder-ene reactions, see:
(a) Trost, B. M.; Czeskis, B. A. Tetrahedron Lett. 1994, 35, 211.
(b) Goeke, A.; Sawamura, M.; Kuwano, R.; Ito, Y. Angew. Chem., Int. Ed. 1996, 35, 662.
(c) Hatano, M.; Terada, M.; Mikami, K. Angew. Chem., Int. Ed. 2001, 40, 249.
(d) Hatano, M.; Mikami, K. Org. Biomol. Chem. 2003, 1, 3871.
(e) Hatano, M.; Mikami, K. J. Am. Chem. Soc. 2003, 125, 4704.
(f) Mikami, K.; Hatano, M. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 5767.
[7] (a) Kasatkin, A.; Nakagawa, T.; Okamoto, S.; Sato, F. J. Am. Chem. Soc. 1995, 117, 3881.
(b) Yatsumonji, Y.; Nishimura, T.; Tsubouchi, A.; Noguchi, K.; Takeda, T. Chem. Eur. J. 2009, 15, 2680.
[8] (a) Ito, Y.; Aoyama, H.; Hirao, T.; Mochizuki, A.; Saegusa, T. J. Am. Chem. Soc. 1979, 101, 494.
(b) Kende, A. S.; Roth, B.; Sanfilippo, P. J. J. Am. Chem. Soc. 1982, 104, 1784.
(c) Kende, A. S.; Roth, B.; Sanfilippo, P. J.; Blacklock, T. J. J. Am. Chem. Soc. 1982, 104, 5808.
(d) Toyota, M.; Wada, T.; Fukumoto, K.; Ihara, M. J. Am. Chem. Soc. 1998, 120, 4916.
[9] Sherry, B. D.; Toste, F. D. J. Am. Chem. Soc. 2004, 126, 15978.
[10] Zhang, Z.; Liu, C.; Kinder, R. E.; Han, X.; Qian, H.; Widenhoefer, R. A. J. Am. Chem. Soc. 2006, 128, 9066.
[11] (a) Stork, G.; Mook, R., Jr. J. Am. Chem. Soc. 1983, 105, 3720.
(b) Stork, G.; Mook, R., Jr. J. Am. Chem. Soc. 1987, 109, 2829.
[12] (a) Trost, B. M.; Rise, F. J. Am. Chem. Soc. 1987, 109, 3161.
(b) Yamada, H.; Aoyagi, S.; Kibayashi, C. Tetrahedron Lett. 1997, 38, 3027.
(c) Oh, C. H.; Rhim, C. Y.; Kim, M.; Park, D. I.; Gupta, A. K. Synlett 2005, 2694.
(d) Oh, C. H.; Jung, H. H. Tetrahedron Lett. 1999, 40, 1535.
(e) Oh, C. H.; Jung, H. H.; Kim, J. S.; Cho, S. W. Angew. Chem., Int. Ed. 2000, 39, 752.
(f) Oh, C. H.; Han, J. W.; Kim, J. S.; Um, S. Y.; Jung, H. H.; Jang, W. H.; Won, H. S. Tetrahedron Lett. 2000, 41, 8365.
[13] For reviews on oxa-Micheal reactions, see:
(a) Nising, C. F.; Bräse, S. Chem. Soc. Rev. 2008, 37, 1218.
(b) Nising, C. F.; Bräse, S. Chem. Soc. Rev. 2012, 41, 988.
[14] (a) Hudlicky, T.; Natchus, M. G.; Sinai-Zingde, G. J. Org. Chem. 1987, 52, 4641.
(b) Hsu, D.-S.; Liao, C.-C. Org. Lett. 2003, 5, 4741.
[15] (a) Bickart, P.; Carson, F. W.; Jacobus, J.; Miller, E. G.; Mislow, K. J. Am. Chem. Soc. 1968, 90, 4869.
(b) Tang, R.; Mislow, K. J. Am. Chem. Soc. 1970, 92, 2100.
(c) Evans, D. A.; Andrews, G. C.; Sims, C. L. J. Am. Chem. Soc. 1971, 93, 4956.
(d) Evans, D. A.; Andrews, G. C. Acc. Chem. Res. 1974, 7, 147.
[16] For selected applications in total synthesis, see:
(a) Engstrom, K. M.; Mendoza, M. R.; Navarro-Villalobos, M.; Gin, D. Y. Angew. Chem., Int. Ed. 2001, 40, 1128.
(b) Taber, D. F.; Teng, D. J. Org. Chem. 2002, 67, 1607.
(c) Pelc, M. J.; Zakarian, A. Org. Lett. 2005, 7, 1629.
(d) Lu, C.-D.; Zakarian, A. Angew. Chem., Int. Ed. 2008, 47, 6829.
(e) Ilardi, E. A.; Isaacman, M. J.; Qin, Y.-C.; Shelly, S. A.; Zakarian, A. Tetrahedron 2009, 65, 3261.
[17] (a) Riley, H. L.; Morley, J. F.; Friend, N. A. C. J. Chem. Soc. 1932, 1875.
(b) Waitkins, G. R.; Clark, C. W. Chem. Rev. 1945, 36, 235.
(c) Fürstner, A.; Gastner, T. Org. Lett. 2000, 2, 2467.
[18] Blay, G.; Cardona, L.; García, B.; Pedro, J. R. J. Org. Chem. 1993, 58, 7204.
[19] (a) Furlan, R. L. E.; Mata, E. G.; Mascaretti, O. A. J. Chem. Soc., Perkin Trans. 1 1998, 355.
(b) Furlan, R. L. E.; Mata, E. G.; Mascaretti, O. A.; Pena, C.; Coba, M. P. Tetrahedron 1998, 54, 13023.
(c) Nicolaou, K. C.; Estrada, A. A.; Zak, M.; Lee, S. H.; Safina, B. S. Angew. Chem., Int. Ed. 2005, 44, 1378.
/
〈 |
|
〉 |