Chinese Journal of Organic Chemistry >
Me3SiCl-Promoted Conjugate Hydrocyanation of α,β-Unsaturated Ketones Using Potassium Hexacyanoferrate(II) as Cyanide Source
Received date: 2015-01-15
Revised date: 2015-01-27
Online published: 2015-02-05
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21362034 and 21162026), the Research Fund for the Doctoral Program of Higher Education of China (No. 20136203120005) and the University Scientific Research Project of Gansu Province (No. 2013B-003).
A Me3SiCl-promoted conjugate hydrocyanation of α,β-unsaturated ketones using non-toxic potassium hexacyanoferrate(II) as an eco-friendly cyanide source is described. By "one-pot" procedure, the intermediate, trimethylsilyl cyanide, does not need separation. With 1 mol% Cs2CO3 as catalyst, a variety of aromatic and aliphatic α,β-unsaturated ketones afforded the corresponding β-cyano ketones regioselectivity exclusively. Avoiding the traditional highly toxic cyanide and without separation of the reactive intermediate trimethylsilyl cyanide make this protocol more practical.
Yang Jingya , Zhan Baohua , Ma Ben , Xiang Xiancheng , Bao Yunfen , Li Zheng . Me3SiCl-Promoted Conjugate Hydrocyanation of α,β-Unsaturated Ketones Using Potassium Hexacyanoferrate(II) as Cyanide Source[J]. Chinese Journal of Organic Chemistry, 2015 , 35(6) : 1286 -1293 . DOI: 10.6023/cjoc201501019
[1] For selected examples, see: (a) Nicolaou, K. C.; Stepan, A. F.; Lister, T.; Li, A.; Montero, A.; Tria, G. S.; Turner, C. I.; Tang, Y.; Wang, J.; Denton, R. M.; Edmonds, D. J. J. Am. Chem. Soc. 2008, 130, 13110. (b) Winkler, M.; Knall, A. C.; Kulterer, M. R.; Klempier, N. J. Org. Chem. 2007, 72, 7423.
[2] For selected examples, see: (a) Nazef, N.; Davies, R. D. M.; Greaney, M. F. Org. Lett. 2012, 14, 3720. (b) Utsugi, M.; Kamada, Y.; Miyamoto, H.; Nakada, M. Tetrahedron Lett. 2007, 48, 6868. (c) Peese, K. M.; Gin, D. Y. J. Am. Chem. Soc. 2006, 128, 8734. (d) Rahman, S. M. A.; Ohno, H.; Maezaki, N.; Iwata, C.; Tanaka, T. Org. Lett. 2000, 2, 2893. (e) Fox, M. E.; Li, C.; Marino, J. P.; Overman, L. E. J. Am. Chem. Soc. 1999, 121, 5467.
[3] For selected examples, see: (a) Fukuta, Y.; Mita, T.; Fukuda, N.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2006, 128, 6312. (b) Ok, D.; Li, C.; Abbadie, C.; Felix, J. P.; Fisher, M. H.; Garcia, M. L.; Kaczorowski, G. J.; Lyons, K. A.; Martin, W. J.; Priest, B. T.; Smith, M. M.; Williams, B. S.; Wyvratt, M. J.; Parsons, W. H. Bioorg. Med. Chem. Lett. 2006, 16, 1358.
[4] Kurono, N.; Nii, N.; Sakaguchi, Y.; Uemura, M.; Ohkuma, T. Angew. Chem., Int. Ed. 2011, 50, 5541.
[5] Cook, C. E.; Allen, D. A.; Miller, D. B.; Whisnant, C. C. J. Am. Chem. Soc. 1995, 117, 7269.
[6] Nagata, W.; Yoshioka, M.; Murakami, M. J. Am. Chem. Soc. 1972, 94, 4654.
[7] For selected examples, see: (a) Hayashi, M.; Kawabata, H.; Shimono, S.; Kakehi, A. Tetrahedron Lett. 2000, 41, 2591. (b) Iida, H.; Moromizato, T.; Hamana, H.; Matsumoto, K. Tetrahedron Lett. 2007, 48, 2037. (c) Tanaka, Y.; Kanai, M.; Shibasaki, M. Synlett 2008, 2295. (d) Tanaka, Y.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2008, 130, 6072. (e) Yang, J.; Wang, Y.; Wu, S.; Chen, F.-X. Synlett 2009, 3365. (f) Yang, J.; Shen, Y.; Chen, F.-X. Synthesis 2010, 1325. (g) Yang, J.; Chen, F.-X. Chin. J. Chem. 2010, 28, 981. (h) Tanaka, Y.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2010, 132, 8862. (i) Yang, J.; Wu, S.; Chen, F.-X. Synlett 2010, 2725. (j) Zhang, J.; Liu, X.; Wang, R. Chem. Eur. J. 2014, 20, 4911.
[8] For selected examples, see: (a) Ellis, J. E.; Davis, E. M.; Brower, P. L. Org. Process Res. Dev. 1997, 1, 250. (b) Provencher, B. A.; Bartelson, K. J.; Liu, Y.; Foxman, B. M.; Deng, L. Angew. Chem., Int. Ed. 2011, 50, 10565. (c) Kawai, H.; Okusu, S.; Tokunaga, E.; Sato, H.; Shiro, M.; Shibata, N. Angew. Chem., Int. Ed. 2012, 51, 4959.
[9] Wang, Y.-F.; Zeng, W.; Sohail, M.; Guo, J.; Wu, S.; Chen, F.-X. Eur. J. Org. Chem. 2013, 4624.
[10] (a) Lin, S.; Wei, Y.; Liang, F. Chem. Commun. 2012, 48, 9879. (b) Dong, H.-R.; Dong, W.-J.; Li, R.-S.; Hu, Y.-M.; Dong, H.-S.; Xie, Z.-X. Green Chem. 2014, 16, 3454.
[11] Ramesh, S.; Lalitha, A. Acta Chim. Slov. 2013, 60, 689.
[12] (a) Li, Z.; Liu, C.; Zhang, Y.; Li, R.; Ma, B.; Yang, J. Synlett 2012, 23, 2567. (b) Li, Z.; Yin, J.; Li, T.; Wen, G.; Shen, X.; Yang, J. Tetrahedron 2014, 70, 5619.
[13] Schareina, T.; Zapf, A.; Beller, M. Chem. Commun. 2004, 1388.
[14] For reviews, see: (a) Anbarasan, P.; Schareina, T.; Beller, M. Chem. Soc. Rev. 2011, 40, 5049. (b) Wang, L.; Zhao, W.; Duan, Z. Prog. Chem. 2010, 22, 1964 (in Chinese). (王丽丽, 赵伟宁, 段征, 化学进展, 2010, 22, 1964.)
[15] For selected examples, see: (a) Mariampillai, B.; Alliot, J.; Li, M.; Lautens, M. J. Am. Chem. Soc. 2007, 129, 15372. (b) Schareina, T.; Zapf, A.; Mägerlein, W.; Müller, N.; Beller, M. Chem. Eur. J. 2007, 13, 6249. (c) Ren, Y.; Liu, Z.; Zhao, S.; Tian, X.; Wang, J.; Yin, W.; He, S. Catal. Commun. 2009, 10, 768. (d) Schareina, T.; Jackstell, R.; Schulz, T.; Zapf, A.; Cotté, A.; Gotta, M.; Beller, M. Adv. Synth. Catal. 2009, 351, 643. (e) Gerber, R.; Oberholzer, M.; Frech, C. M. Chem. Eur. J. 2012, 18, 2978. (f) Modak, A.; Mondal, J.; Bhaumik, A. Green Chem. 2012, 14, 2840. (g) Senecal, T. D.; Shu, W.; Buchwald, S. L. Angew. Chem., Int. Ed. 2013, 52, 10035. (h) Giachi, G.; Frediani, M.; Oberhauser, W.; Lamaty, F.; Martinez, J.; Colacino, E. ChemSusChem 2014, 7, 919.
[16] Schareina, T.; Zapf, A.; Mägerlein, W.; Müller, N.; Beller, M. Synlett 2007, 555.
[17] Zhu, Y.-Z.; Cai, C. Synth. Commun. 2008, 38, 2753.
[18] (a) Ren, Y.; Yan, M.; Zhao, S.; Sun, Y.; Wang, J.; Yin, W.; Liu, Z. Tetrahedron Lett. 2011, 52, 5107. (b) Ren, Y.; Dong, C.; Zhao, S.; Sun, Y.; Wang, J.; Ma, J.; Hou, C. Tetrahedron Lett. 2012, 53, 2825.
[19] For selected examples, see: (a) Li, Z.; Shi, S.; Yang, J. Synlett 2006, 2495. (b) Cheng, Y.-N.; Duan, Z.; Yu, L.; Li, Z.; Zhu, Y.; Wu, Y. Org. Lett. 2008, 10, 901. (c) Yan, G.; Kuang, C.; Zhang, Y.; Wang, J. Org. Lett. 2010, 12, 1052. (d) Li, Z.; Ma, Y.; Xu, J.; Shi, J.; Cai, H. Tetrahedron Lett. 2010, 51, 3922. (e) Li, Z.; Tian, G.; Ma, Y. Synlett 2010, 2164. (f) Zhao, Z.; Li, Z. Eur. J. Org. Chem. 2010, 5460. (g) Hu, X.; Ma, Y.; Li, Z. J. Organomet. Chem. 2012, 705, 70. (h) Li, Z.; Xu, J.; Niu, P.; Liu, C.; Yang, J. Tetrahedron 2012, 68, 8880. (i) Hu, X.; Li, H.; Yang, J.; Li, Z. Synlett 2014, 25, 1786. (j) Li, Z.; Wen, F.; Yang, J. Chin. J. Chem. 2014, 32, 1251.
[20] Li, Z.; Zhang, Y.; Wen, F.; Yin, J.; Zheng, H.; Li, H.; Yang, J. J. Chem. Res. 2013, 37, 601.
[21] Li, Z.; Li, R.; Zheng, H.; Wen, F.; Li, H.; Yin, J.; Yang, J. J. Braz. Chem. Soc. 2013, 24, 1739.
[22] Samson, M.; Vandewalle, M. Synth. Commun. 1978, 8, 231.
[23] Cabirol, F. L.; Lim, A. E. C.; Hanefeld, U.; Sheldon, R. A.; Lyapkalo, I. M. J. Org. Chem. 2008, 73, 2446.
[24] Li, Z.; Sun, Y.; Song, G.; Zhou, J. CN 101250197, 2008 [Chem. Abstr. 2008, 149, 356032].
[25] (a) Chen, J.; Spear, S. K.; Huddleston, J. G.; Rogers, R. D. Green Chem. 2005, 7, 64. (b) Chen, G.; Weng, J.; Zheng, Z.; Zhu, X.; Cai, Y.; Cai, J.; Wan, Y. Eur. J. Org. Chem. 2008, 3524.
[26] (a) Landini, D.; Maia, A.; Montanari, F. J. Am. Chem. Soc. 1978, 100, 2796. (b) Parker, A. J. Chem. Rev. 1969, 69, 1.
[27] (a) Sammis, G. M.; Jacobsen, E. N. J. Am. Chem. Soc. 2003, 125, 4442. (b) Sammis, G. M.; Danjo, H.; Jacobsen, E. N. J. Am. Chem. Soc. 2004, 126, 9928. (c) Mita, T.; Sasaki, K.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2005, 127, 514. (d) Mazet, C.; Jacobsen, E. N. Angew. Chem. Int. Ed. 2008, 47, 1762.
[28] (a) Gawronski, J.; Wascinska, N.; Gajewy, J. Chem. Rev. 2008, 108, 5227. (b) Benaglia, M.; Guizzetti, S.; Pignataro, L. Coord. Chem. Rev. 2008, 252, 492. (c) Rendler, S.; Oestreich, M. Synthesis 2005, 1727.
[29] Prakash, G. K. S.; Vaghoo, H.; Panja, C.; Surampudi, V.; Kultyshev, R.; Mathew, T.; Olah, G. A. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 3026.
[30] Berryman, K. A.; Doherty, A. M.; Edmunds, J. J.; Patt, W. C.; Plummer, M. S.; Repine, J. T. US 5691373, 1997 [Chem. Abstr. 1997, 128, 48214].
[31] Davey, W.; Tivey, D. J. J. Chem. Soc. 1958, 1230.
/
〈 |
|
〉 |