REVIEW

C—H Functionalization Induced by the Oxidizing Directing Group

  • Hu Zhiyong ,
  • Tong Xiaofeng ,
  • Liu Guixia
Expand
  • a Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237;
    b State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032

Received date: 2014-12-30

  Revised date: 2015-02-13

  Online published: 2015-02-14

Supported by

Project supported by the National Natural Science Foundation of China (No. 21202184).

Abstract

Transition-metal catalyzed C—H functionalization is a straightforward and efficient way to construct C—C and C—X bonds. However, these transformations usually require stioichiometric or excess amount of external oxidants to oxidize low valent metal and regenerate the active catalytic species. The use of the oxidizing directing group, which contains some special group acting as the internal oxidant, can avoid the troubles arousing from the external oxidants and make the reaction process more simple and efficient. Recently, increasing number of novel oxidizing directing groups have been designed and diverse kinds of reactions have been developed. This approach can be used to synthesize kinds of heterocyles or highly functionalized products under external oxidant free conditions.

Cite this article

Hu Zhiyong , Tong Xiaofeng , Liu Guixia . C—H Functionalization Induced by the Oxidizing Directing Group[J]. Chinese Journal of Organic Chemistry, 2015 , 35(3) : 539 -555 . DOI: 10.6023/cjoc201412050

References

[1] (a) Cho, S. H.; Kim, J. Y.; Kwak, J.; Chang, S. Chem. Soc. Rev. 2011, 40, 5068. (b) Li, B.-J.; Shi, Z.-J. Chem. Soc. Rev. 2012, 41, 5588. (c) Kuhl, N.; Hopkinson, M. N.; Wencel-Delord, J.; Glorius, F. Angew. Chem., Int. Ed. 2012, 51, 10236. (d) Song, G. Y.; Wang, F.; Li, X. W. Chem. Soc. Rev. 2012, 41, 3651.
[2] Lewis, J. C.; Bergman, R. G.; Ellman, J. Acc. Chem. Res. 2008, 41, 1013.
[3] Arockiam, P. B.; Bruneau, C.; Dixneuf, P. H. Chem. Rev. 2012, 112, 5879.
[4] Engle, K. M.; Mei, T.-S.; Wasa, M.; Yu, J.-Q. Acc. Chem. Res. 2012, 45, 788.
[5] Kozhushkov, S. I.; Ackermann, L. Chem. Sci. 2013, 4, 886.
[6] Frasco, D. A.; Lilly, C. P.; Boyle, P. D.; Ison, E. A. ACS Catal. 2013, 3, 2421.
[7] Stuart, D. R.; Mégan, B.-L.; Burgess, K. M. N.; Fagnou, K. J. Am. Chem. Soc. 2008, 130, 16474.
[8] Li, G.; Leow, D.; Wan, L.; Yu, J.-Q. Angew. Chem., Int. Ed. 2013, 52, 1245.
[9] Boele, M. D. K.; Strijdonck, G. P. F.; Vries, A. H. M.; Kamer, P. C. J.; Vries, J. G.; Leeuwen, P. W. N. M. J. Am. Chem. Soc. 2002, 124, 1586.
[10] Cheng, X.-F.; Li, Y.; Su, Y.-M.; Yin, F.; Wang, J.-Y.; Sheng, J.; Vora, H. U.; Wang, X.-S.; Yu J.-Q. J. Am. Chem. Soc. 2013, 135, 1236.
[11] (a) Tsai, A.; Tauchert, M.; Bergman, E.; Ellman, J. J. Am. Chem. Soc. 2011, 133, 1248. (b) Li, Y.; Zhang, X.; Chen, K.; He, K.; Shi, Z. Org. Lett. 2012, 14, 636. (c) Feng, C.; Feng, D.; Loh, T.-P. Org. Lett. 2013, 15, 3670.
[12] (a) Wendlandt, A. E.; Suess, A. M.; Stahl, S. S. Angew. Chem., Int. Ed. 2011, 50, 11062. (b) Wang, D.-H.; Engle, K. M.; Shi, B.-F.; Yu, J.-Q. Science 2010, 327, 315.
[13] (a) Patureau, F. W.; Glorius, F. Angew. Chem. 2011, 123, 2021. (b) Huang, H.; Ji, X.; Wu, W.; Jiang, H. Chem. Soc. Rev. 2015, 44, 1155. (c) Mo, J.; Wang, L.; Liu, Y.; Cui, X. Synthesis 2015, 47, 439.
[14] Ng, K. H.; Chan, A. S. C.; Yu, W. Y. J. Am. Chem. Soc. 2010, 132, 12862.
[15] Yoo, E. J.; Ma. S.; Mei, T.-S.; Chan, K. S. L.; Yu, J.-Q. J. Am. Chem. Soc. 2011, 133, 7652.
[16] Dong, Z.; Dong, G. J. Am. Chem. Soc. 2013, 135, 18350.
[17] Patel, P.; Chang, S. Org. Lett. 2014, 16, 3328.
[18] Guimond, N.; Gouliaras, C.; Fagnou, K. J. Am. Chem. Soc. 2010, 132, 6908.
[19] (a) Guimond, N.; Gorelsky, S. I.; Fagnou, K. J. Am. Chem. Soc. 2011, 133, 6449. (b) Xu, L.; Zhu, Q.; Huang, G.; Cheng, B.; Xia, Y. J. Org. Chem. 2012, 77, 3017.
[20] Rakshit, S.; Grohmann, C.; Besset, T.; Glorius, F. J. Am. Chem. Soc. 2011, 133, 2350.
[21] Xu, X.; Liu, Y.; Park, C.-M. Angew. Chem. 2012, 124, 9506.
[22] Davis, T. A.; Hyster, T. K.; Rovis T. Angew. Chem., Int. Ed. 2013, 52, 14181.
[23] Yu, D.-G.; de Azambuja, F.; Gensch, T.; Daniliuc, C. G.; Glorius, F. Angew. Chem., Int. Ed. 2014, 53, 9650.
[24] Wang, H.; Grohmann, C.; Nimphius, C.; Glorius, F. J. Am. Chem. Soc. 2012, 134, 19592.
[25] Presset, M.; Oehlrich, D.; Rombouts, F.; Molander, G. A. Org. Lett. 2013, 15, 1528.
[26] Huckins, J. R.; Bercot, E. A.; Thiel, O. R.; Hwang, T.-L.; Bio, M. M. J. Am. Chem. Soc. 2013, 135, 14492.
[27] Li, B.; Feng, H. L.; Xu ,S.; Wang, B. Chem. Eur. J. 2011, 17, 12573.
[28] Ackermann, L.; Fenner, S. Org. Lett. 2011, 13, 6548.
[29] Li, B.; Ma, J.; Wang, N.; Feng, H.; Xu, S.; Wang, B. Org. Lett. 2012, 14, 736.
[30] Fukui, Y.; Liu, P.; Liu, Q.; He, Z.-T.; Wu, N.-Y.; Tian, P.; Lin, G.-Q. J. Am. Chem. Soc. 2014, 136, 15607.
[31] Wang, H.; Glorius, F. Angew. Chem., Int. Ed. 2012, 51, 7318
[32] Zeng, R.; Wu, S.; Fu, C. L.; Ma, S. J. Am. Chem. Soc. 2013, 135, 18284.
[33] Hyster, T. K.; Ruhl, K. E.; Rovis, T. J. Am. Chem. Soc. 2013, 135, 5364.
[34] Cui, S.; Zhang, Y; Wang, D.; Wu, Q. Chem. Sci. 2013, 4, 3912.
[35] (a) Hyster, T. K.; Rovis, T. Synlett 2013, 1842. (b) Cui, S.; Zhang, Y.; Wu, Q. Chem. Sci. 2013, 4, 3421.
[36] Zhang, Y.; Zheng, J.; Cui, S. J. Org. Chem. 2014, 79, 6490.
[37] Liu, G.; Shen, Y.; Zhou, Z.; Lu, X. Angew. Chem., Int. Ed. 2013, 52, 6033.
[38] Shen, Y.; Liu, G.; Zhou, Z.; Lu, X. Org. Lett. 2013, 15, 3366.
[39] Zhou, Z.; Liu, G.; Shen, Y.; Lu, X. Org. Chem. Front. 2014, 1, 1161.
[40] Hu, F.; Xia, Y.; Ye, F.; Liu, Z.; Ma, C.; Zhang, Y.; Wang, J. Angew. Chem., Int. Ed. 2014, 53, 1364.
[41] Zhang, H.; Wang, K.; Wang, B.; Yi, H.; Hu, F.; Li, C.; Zhang, Y.; Wang, J. Angew. Chem., Int. Ed. 2014, 53, 13234.
[42] Piou, T.; Rovis, T. J. Am. Chem. Soc. 2014, 136, 11292.
[43] Li, X. G.; Liu, K.; Zou, G.; Liu, P. N. Adv. Synth. Catal. 2014, 356, 1496.
[44] Hyster, T. K.; Knörr, L.; Ward, T. R.; Rovis, T. Science 2012, 338, 500.
[45] Ye, B.; Cramer, N. Science 2012, 338, 504.
[46] Ye, B.; Donets, P. A.; Cramer, N. Angew. Chem., Int. Ed. 2014, 53, 507.
[47] Ye, B.; Cramer, N. J. Am. Chem. Soc. 2013, 135, 636.
[48] Ye, B.; Cramer, N. Angew. Chem., Int. Ed. 2014, 53, 7896.
[49] Too, P. C.; Wang Y.-F.; Chiba S. S. Org. Lett. 2010, 12, 5688.
[50] Zhang, X.; Chen, D.; Zhao, M.; Zhao J.; Jia, A.; Li, X. Adv. Synth. Catal. 2011, 353, 719.
[51] Too, P. C.; Noji, T.; Lim, Y. J.; Li, X.; Chiba, S. Synlett 2011, 2789.
[52] Hyster, T. K.; Rovis, T. Chem. Commun. 2011, 47, 11846.
[53] Chinnagolla, R. K.; Pimparkar, S.; Jeganmohan, M. Org. Lett. 2012, 14, 3032.
[54] Kornhaaß, C.; Li J.; Ackermann, L. J. Org. Chem. 2012, 77, 9190.
[55] Neely, J. M.; Rovis, T. J. Am. Chem. Soc. 2013, 135, 66.
[56] Neely, J. M.; Rovis, T. J. Am. Chem. Soc. 2014, 136, 2735.
[57] Zhao, D.; Lied, F.; Glorius, F. Chem. Sci. 2014, 5, 2869.
[58] Cho, S. H.; Hwang, S. J.; Chang, S. J. Am. Chem. Soc. 2008, 130, 9254.
[59] Liu, W.; Li, Y. H.; Kuang, C. X. Org. Lett. 2013, 15, 2342.
[60] Wu, J.; Cui, X.; Chen, L.; Jiang, G.; Wu, Y. J. Am. Chem. Soc. 2009, 131, 13888.
[61] Huang, X.; Huang, J.; Du, C.; Zhang, X.; Song, F.; You, J. Angew. Chem., Int. Ed. 2013, 52, 12970.
[62] Zhang, X.; Qi, Z.; Li, X. Angew. Chem., Int. Ed. 2014, 53, 10794.
[63] Zhao, D.; Shi, Z.; Glorius, F. Angew. Chem., Int. Ed. 2013, 52, 12426.
[64] Zheng, L.; Hua, R. Chem. Eur. J. 2014, 20, 2352.
[65] Muralirajana, K.; Cheng, C. H. Adv. Synth. Catal. 2014, 356, 1571.
[66] Zhang, Z.; Jiang, H.; Huang, Y. Org. Lett. 2014, 16, 5976.
[67] Chuang, S.-C.; Gandeepan, P.; Cheng, C.-H. Org. Lett. 2013, 15, 5750.
[68] Liu, B.; Song, C.; Sun, C.; Zhou, S.; Zhu, J. J. Am. Chem. Soc. 2013, 135, 16625.
[69] Wang, C.; Huang, Y. Org. Lett. 2013, 15, 5294.
[70] Zhang, Q.-R.; Huang, J.-R.; Zhang, W.; Dong, L. Org. Lett. 2014, 16, 1684.
[71] Yadav, M. R.; Rit, R. K.; Shankar, M.; Sahoo, A. K. J. Org. Chem. 2014, 79, 6123.
[72] Gerfaud, T.; Neuville, L.; Zhu, J. Angew. Chem., Int. Ed. 2009, 48, 572.
[73] Tan, Y.; Hartwig, J. F. J. Am. Chem. Soc. 2010, 132, 3676.
[74] Chiba, S. Chem. Lett. 2012, 41, 1554.

Outlines

/