Chinese Journal of Organic Chemistry >
Research Progress on Ammonia-Borane Based Direct Transfer Hydrogenation Reactions
Received date: 2014-12-31
Revised date: 2015-02-14
Online published: 2015-02-28
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21407028, 21471037) and the Natural Science Foundation of Guangdong Province (No. 2014A030310449).
Direct transfer hydrogenation reaction is a H transfer process from a hydrogen donor to a hydrogen acceptor without the presence of a catalyst——the so-called metal-free reaction. It's an idea elementary process for mechanistic study, but was rarely reported due to very high energy barriers. However, it is revealed both theoretically and experimentally that increase in polarity of the substrates can efficiently lower the energy barrier, meaning that polar hydrogen donor and hydrogen acceptors might make such reactions happen. Ammonia borane is well-known as a chemical hydrogen storage material with very high H content. In the meanwhile, it's an ideal polar hydrogen donor containing both hydridic and protic H atoms. Applying ammonia borane as the polar hydrogen donor and some polar hydrogen acceptor molecules such as imines, polarized olefins, aldehydes and ketones, direct transfer hydrogenation reaction occurred under mild conditions. The reaction scope, similarity and differences in mechanism are reviewed herein.
Yang Xianghua , Xie Zhenming , He Jun , Yu Lin . Research Progress on Ammonia-Borane Based Direct Transfer Hydrogenation Reactions[J]. Chinese Journal of Organic Chemistry, 2015 , 35(3) : 603 -609 . DOI: 10.6023/cjoc201412057
[1] (a) Berke, H. ChemPhysChem 2010, 11, 1837. (b) Ujaque, G.; Lledós, A. J. Mol. Struct.: THEOCHEM 2009, 903, 123.
[2] (a) Meerwein, H.; Schmidt, R. Justus Liebigs Ann. Chem. 1925, 444, 221. (b) Ponndorf, W. Angew. Chem. 1926, 39, 138. (c) Verley, A. Bull. Soc. Chim. Fr. 1925, 37, 871.
[3] (a) Noyori, R.; Okhuma, T.; Kitamura, M.; Takaya, H.; Sayo, N.; Kumobayashi, H.; Akuragawa, S. J. Am. Chem. Soc. 1987, 109, 5856. (b) Noyori, R. In Organic Synthesis, Wiley-Interscience, John Wiley & Sons, New York, 1994, pp. 16~94 and references cited therein. (c) Blum, Y.; Czarkie, D.; Rahamim, Y.; Shvo, Y. Organometallics 1985, 4, 1459. (d) Shvo, Y.; Czarkie, D.; Rahamim, Y.; Chodosh, D. F. J. Am. Chem. Soc. 1986, 108, 7400. (e) Casey, C. P.; Strotman, N. A.; Beetner, S. E.; Johnson, J. B.; Priebe, D. C.; Vos, T. E.; Khodavandi, B.; Guzei, I. A. Organometallics 2006, 25, 1230.
[4] (a) Miller, D. J.; Smith, D. M.; Chan, B.; Radom, M. Mol. Phys. 2006, 104, 777. (b) Fernández, I.; Sierra, M. A.; Cossío, F. P. J. Org. Chem. 2007, 72, 1488.
[5] Feller, D. F.; Schmidt, M. W.; Ruedenberg, K. J. Am. Chem. Soc. 1982, 104, 960.
[6] McKee, M. L.; Stanbury, D. M. J. Am. Chem. Soc. 1992, 114, 3214.
[7] (a) Hamilton, C. W.; Baker, R. T.; Staubitz, A.; Manners, I. Chem. Soc. Rev. 2009, 38, 279. (b) Marder, T. B. Angew. Chem., Int. Ed. 2007, 46, 8116. (c) Gutowska, A.; Li, L.; Shin, Y.; Wang, M.; Li, X. S.; Linehan, J. C.; Smith, R. S.; Kay, B. D.; Schmid, B.; Shaw, W.; Gutowski, M.; Autrey, T. Angew. Chem., Int. Ed. 2005, 44, 3578. (d) Grochala, W.; Edwards, P. P. Chem. Rev. 2004, 104, 1283.
[8] (a) Zhang, L.; Tu, Q.; Chen, X.; Liu, P. Prog. Chem. 2014, 26, 749. (b) Yang, L.; Cao, N.; Du, C.; Dai, H.; Hu, K.; Luo, W.; Cheng, G. Mater. Lett. 2014, 115, 113. (c) Li, H.; Yang, Q,; Chen, X.; Shore, S. G. J. Organomet. Chem. 2014, 751, 60. (d) Kim, Y.; Baek, H.; Lee, J. H.; Yeo, S.; Kim, K.; Hwang, S. J.; Eun, B.; Nam, S. W.; Lim, T. H.; Yoon, C. W. Phys. Chem. Chem. Phys. 2013, 15, 19584. (e) Hartmann, C. E.; Jurcik, V.; Songis, O.; Cazin, C. S. Chem. Commun. 2013, 49, 10629. (f) Marder, T. Angew. Chem., Int. Ed. 2007, 46, 8116. (k) Denney, M. C.; Pons, V.; Hebden, T. J.; Heinekey, D. M.; Goldberg, K. I. J. Am. Chem. Soc. 2006, 128, 12048.
[9] (a) Parvanov, V. M.; Schenter, G. K.; Hess, N. J.; Daemen, L. L.; Hartl, M.; Stowe, A. C.; Camaionia, D. M.; Autrey, T. Dalton Trans. 2008, 33, 4514. (b) Rasul, G. K. G.; Prakash, S.; Olah, G. A. THEOCHEM 2007, 818, 65.
[10] (a) Yurderi, M.; Bulut, A.; Zahmakiran, M.; Gulcan, M.; Ozkar, S. Appl. Catal. B, Environ. 2014, 160, 534. (b) Dong, H.; Berke, H. J. Organomet. Chem. 2011, 696, 1803. (c) Jiang, Y.; Blacque, O.; Fox, T.; Frech, C. M.; Berke, H. Organometallics 2009, 28, 5493. (d) Jiang, Y.; Berke, H. Chem. Commun. 2007, 3571.
[11] Hartmann, C. E.; Jurcik, V.; Songis, O.; Cazin, C. S. Chem. Commun. 2013, 49, 1005.
[12] Yang, X.; Zhao, L.; Fox, T.; Wang, Z.-X.; Berke, H. Angew. Chem., Int. Ed. 2010, 49, 2058.
[13] Morse, P. M. Phys. Rev. 1929, 34, 57.
[14] (a) Hammett, L. P. J. Am. Chem. Soc. 1937, 59, 96. (b) Hammett, L. P. Chem. Rev. 1935, 17, 125.
[15] (a) Yang, X.; Fox, T.; Berke, H. Chem. Commun. 2011, 47, 2053. (b) Yang, X.; Fox, T.; Berke, H. Org. Biomol. Chem. 2012, 10, 852.
[16] (a) Smythe N. C.; Gordon, J. C. Eur. J. Inorg. Chem. 2010, 509. (b) Pons, V.; Baker, R. T.; Szymczak, N. K.; Heldebrant, D. J.; Linehan, J. C.; Matus, M. H.; Grant D. J.; Dixon, D. A. Chem. Commun. 2008, 6597. (c) Shrestha, R. P.; Diyabalanage, H. V. K.; Semelsberger, T. A.; Ott K. C.; Burrell, A. K. Int. J. Hydrogen Energy 2009, 34, 2616.
[17] Yang, X.; Fox, T.; Berke, H. Tetrahedron 2011, 7121.
[18] Brown, H. C.; Schlesinger, H. I.; Burg, A. B. J. Am. Chem. Soc. 1939, 61, 673.
[19] (a) Brown, H. C.; Wang, K, K.; Chandrasekharan, J. J. Am. Chem. Soc. 1983, 105, 2343. (b) Kudo, T.; Higashide, T.; Ikedate, S.; Yamataka, H. J. Org. Chem. 2005, 70, 5157.
[20] Xu, W.; Fan, H.; Wu, G.; Chen, P. New J. Chem. 2012, 36, 1496.
[21] Xu, W.; Wu, G.; Yao, W.; Fan, H.; Wu, J.; Chen, P. Chem. Eur. J. 2012, 18, 13885.
[22] Wang, X.; Yao, W.; Zhou, D.; Fan, H. Mol. Phys. 2013, 111, 3014.
/
〈 |
|
〉 |