Reviews

Iron-Catalyzed Hydrogenation Reactions

  • Guo Na ,
  • Zhu Shoufei
Expand
  • State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071

Received date: 2015-02-26

  Revised date: 2015-03-28

  Online published: 2015-04-01

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21222205, 21172113, 21421062), the National Basic Research Program of China (973 Program, No. 2011CB808600), the “111” Project (No. B06005) of the Ministry of Education of China, and the National Program for Support of Top-notch Young Professionals.

Abstract

The transition-metal-catalyzed hydrogenation of unsaturated organic compounds including alkenes, alkynes, aldehydes, ketones, and imines, is one of the most important organic transformations for both academic researches and industrial applications. The most popular catalysts for hydrogenation reactions are based on precious metals, such as rhodium, ruthenium, iridium, and palladium. The exhausting resource, the increasing high price, and the toxicity of the precious metals restrict their future applications. Iron is the most abundant transition metal in the earth crust and therefore the cheapest one with excellent environmental benign characters, is considered as an ideal replacement of the precious metal catalysts for hydrogenation reactions. This review paper introduced the newest achievements in the study of iron-catalyzed hydrogenation reactions in both homogenous and heterogeneous systems.

Cite this article

Guo Na , Zhu Shoufei . Iron-Catalyzed Hydrogenation Reactions[J]. Chinese Journal of Organic Chemistry, 2015 , 35(7) : 1383 -1398 . DOI: 10.6023/cjoc201502032

References

[1] (a) de Vries, J. G.; Elsevier, C. J. The Handbook of Homogeneous Hydrogenation, Wiley-VCH, Weinheim, 2007. (b) Gallezot, P. Hydrogenation-Heterogeneous in Encyclopedia of Catalysis, Vol. 4, Ed.: Horvath, I. T., Wiley, Hoboken, 2003.
[2] Osborn, J. A.; Jardine, F. H.; Young, J. F.; Wilkinson, G. J. Chem. Soc. A 1966, 1711.
[3] (a) Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H. Comprehensive Asymmetric Catalysis, Springer, Berlin, 1999. (b) Tang, W.; Zhang, X. Chem. Rev. 2003, 103, 3029. (c) Xie, J. H.; Zhou, Q. L. Acta Chim. Sinica 2012, 70, 1427 (in Chinese). (谢建华, 周其林, 化学学报, 2012, 70, 1427.)
[4] (a) Knowles, W. S. Angew. Chem., Int. Ed. 2002, 41, 1998. (b) Noyori, R. Angew. Chem., Int. Ed. 2002, 41, 2008.
[5] (a) Blaser, H.-U.; Schmidt, E. Asymmetric Catalysis on Industrial Scale: Challenges, Approaches and Solutions, Wiley-VCH, Weinheim, Germany, 2004. (b) Shimizu, H.; Nagasaki, I.; Matsumura, K.; Sayo, N.; Saito, T. Acc. Chem. Res. 2007, 40, 1385. (c) Johnson, N. B.; Lennon, I. C.; Moran, P. H.; Ramsden, J. A. Acc. Chem. Res. 2007, 40, 1291. (d) Ager, D. J.; de Vries, A. H. M.; de Vires, J. G. Chem. Soc. Rev. 2012, 41, 3340.
[6] For selected reviews, see: (a) Enthaler, S.; Junge, K.; Beller, M. Angew. Chem., Int. Ed. 2008, 47, 3317. (b) Nakamura, E.; Yoshikai, N. J. Org. Chem. 2010, 75, 6061. (c) Sun, C.-L.; Li, B.-J.; Shi, Z.-J. Chem. Rev. 2011, 111, 1293. (d) Zhu, S.-F.; Zhou, Q.-L. Nat. Sci. Rev. 2014, 1, 580. (e) Xu, D.; Xiao, W.; Peng, J.; Li, J.; Bai, Y. Chin. J. Org. Chem. 2014, 34, 2195 (in Chinese). (徐大鹏, 肖文军, 彭家建, 历嘉云, 白赢, 有机化学, 2014, 34, 2195.)For selected examples, see:: (f) Zhu, S.-F.; Cai, Y.; Mao, H.-X.; Xie, J.-H.; Zhou, Q.-L. Nat. Chem. 2010, 2, 546. (g) Cai, Y.; Zhu, S.-F.; Wang, G.-P.; Zhou, Q.-L. Adv. Synth. Catal. 2011, 353, 2939. (h) Tondreau, A. M.; Atienza, C. C. H.; Weller, K. J.; Nye, S. A.; Lewis, K. M.; Delis, J. G. P.; Chirik, P. J. Science 2012, 335, 567. (i) Guo, X.; Fang, G.; Li, G.; Ma, H.; Fan, H.; Yu, L.; Ma, C.; Wu, X.; Deng, D.; Wei, M.; Tan, D.; Si, R.; Zhang, S.; Li, J.; Sun, L.; Tang, Z.; Pan, X.; Bao, X. Science 2014, 344, 616. (j) Shen, J.-J.; Zhu, S.-F.; Cai, Y.; Xu, H.; Xie, X.-L.; Zhou, Q.-L. Angew. Chem., Int. Ed. 2014, 53, 13188. (k) Zhang, Y.; Luo, S.; Feng, B.-N. Chin. J. Org. Chem. 2014, 34, 2249 (in Chinese). (张艳, 罗莎, 冯柏年, 有机化学, 2014, 34, 2249.) (l) Liu, S.-S.; Jiang, K.; Pi, D.-W.; Zhou, H.-F.; Uozumi, Y.; Zou, K. Chin. J. Org. Chem. 2014, 34, 1369 (in Chinese). (刘森生, 姜坤, 皮单违, 周海峰, Uozumi, Y., 邹坤, 有机化学, 2014, 34, 1369.)
[7] (a) Enthaler, S.; Junge, K.; Beller, M. In Iron Catalysis in Organic Chemistry-Reactions and Applications, Vol. 4, Ed.: Plietker, B., Wiley, Weinheim, 2008. (b) Chirik, P. J. Modern Alchemy: Replacing Precious Metals with Iron in Catalytic Alkene and Carbonyl Hydrogenation Reactions in Catalysis without Precious Metals, Ed.: Bullock, R. M., Wiley-VCH, Weinheim, 2010, Chapter 4. (c) Nakazawa, H.; Itazaki, M. Fe-H Complexes in Catalysis in Iron Catalysis-Fundamentals and Applications, Ed.: Plietker, B., Springer, Heideberg, 2011. (d) Bolm, C.; Legros, J.; Le Paih, J.; Zan, L. Chem. Rev. 2004, 104, 6217. (e) Morris, R. H. Chem. Soc. Rev. 2009, 38, 2282. (f) Junge, K.; Schröder, K.; Beller, M. Chem. Commun. 2011, 47, 4849.
[8] Frankel, E. N.; Emken, E. A.; Peters, H. M.; Davison, V. L.; Butterfield, R. O. J. Org. Chem. 1964, 29, 3292.
[9] Frankel, E. N.; Emken, E. A.; Davison, V. L. J. Org. Chem. 1965, 30, 2739.
[10] Cais, M.; Maoz, N. J. Chem. Soc. A 1971, 1811.
[11] Schroeder, M. A.; Wrighton, M. S. J. Am. Chem. Soc. 1976, 98, 551.
[12] (a) Weiller, B. H.; Miller, M. E.; Grant, E. R. J. Am. Chem. Soc. 1987, 109, 352. (b) Weiller, B. H.; Grant, E. R. J. Am. Chem. Soc. 1987, 109, 1051. (c) Miller, M. E.; Grant, E. R. J. Am. Chem. Soc. 1987, 109, 7951.
[13] Small, B. L.; Brookhart, M.; Bennett, A. M. A. J. Am. Chem. Soc. 1998, 120, 4049.
[14] (a) Bart, S. C.; Lobkovsky, E.; Chirik, P. J. J. Am. Chem. Soc. 2004, 126, 13794. (b) Bart, S. C.; Lobkovsky, E.; Bill, E.; Wieghardt, K.; Chirik, P. J. Inorg. Chem. 2007, 46, 7055. (c) Trovitch, R. J.; Lobkovsky, E.; Bill, E.; Chirik, P. J. Organometallics 2008, 27, 1470. (d) Russell, S. K.; Darmon, J. M.; Lobkovsky, E.; Chirik, P. J. Inorg. Chem. 2010, 49, 2782.
[15] Bart, S. C.; Chlopek, K.; Bill, E.; Bouwkamp, M. W.; Lobkovsky, E.; Neese, F.; Wieghardt, K.; Chirik, P. J. J. Am. Chem. Soc. 2006, 128, 13901.
[16] Archer, A. M.; Bouwkamp, M. W.; Cortez, M.-P.; Lobkovsky, E.; Chirik, P. J. Organometallics 2006, 25, 4269.
[17] Bart, S. C.; Hawrelak, E. J.; Lobkovsky, E.; Chirik, P. J. Organometallics 2005, 24, 5518.
[18] Trovitch, R. J.; Lobkovsky, E.; Chirik, P. J. Inorg. Chem. 2006, 45, 7252.
[19] Yu, R. P.; Darmon, J. M.; Hoyt, J. M.; Margulieux, G. W.; Turner, Z. R.; Chirik, P. J. ACS Catal. 2012, 2, 1760.
[20] (a) Bianchini, C.; Meli, A.; Peruzzini, M.; Vizza, F.; Zanobini, F. Organometallics 1989, 8, 2080. (b) Bianchini, C.; Meli, A.; Peruzzini, M.; Frediani, P.; Bohanna, C.; Esteruelas, M. A.; Ora, L. A. Organomentallics 1992, 11, 138.
[21] Daida, E. J.; Peters, J. C. Inorg. Chem. 2004, 43, 7474.
[22] Fong, H.; Moret, M.-E.; Lee, Y.; Peters, J. C. Organometallics 2013, 32, 3053.
[23] Srimani, D.; Diskin-Posner, Y.; Ben-David, Y.; Milstein, D. Angew. Chem., Int. Ed. 2013, 52, 14131.
[24] Tajima, Y.; Kunioka, E. J. Org. Chem. 1968, 33, 1689.
[25] (a) Inoue, H.; Suzuki, M. J. Chem. Soc., Chem. Commun. 1980, 817. (b) Inoue, H.; Sato, M. J. Chem. Soc., Chem. Commun. 1983, 983.
[26] Frank, D. J.; Guiet, L.; Käslin, A.; Murphy, E.; Thomas, S. P. RSC Adv. 2013, 3, 25698.
[27] Phua, P.-H.; Lefort, L.; Boogers, J. A. F.; Tristany, M.; de Vries, J. G. Chem. Commun. 2009, 3747.
[28] Rangheard, C.; de Julián Fernández, C.; Phua, P.-H.; Hoorn, J.; Lefort, L.; de Vries, J. G. Dalton Trans. 2010, 39, 8464.
[29] Welther, A.; Bauer, M.; Mayer, M.; von Wangelin, A. J. ChemCatChem 2012, 4, 1088.
[30] Gieshoff, T. N.; Welther, A.; Kessler, M. T.; Prechtl, M. H. G.; von Wangelin, A. J. Chem. Commun. 2014, 50, 2261.
[31] Stein, M.; Wieland, J.; Steurer, P.; Tölle, F.; Mülhaupt, R.; Breit, B. Adv. Synth. Catal. 2011, 353, 523.
[32] Kelsen, V.; Wendt, B.; Werkmeister, S.; Junge, K.; Beller M.; Chaudret, B. Chem. Commun. 2013, 49, 3416.
[33] Hudson, R.; Rivière, A.; Cirtiu, C. M.; Luska, K. L.; Moores, A. Chem. Commun. 2012, 48, 3360.
[34] For a review, see: Bauer, G.; Kirchner, K. A. Angew. Chem., Int. Ed. 2011, 50, 5798.
[35] Knölker, H.-J.; Baum, E.; Goesmann, H.; Klauss, R. Angew. Chem., Int. Ed. 1999, 38, 2064.
[36] (a) Blum, Y.; Czarkie, D.; Rahamim, Y.; Shvo, Y. Organometallics 1985, 4, 1459. (b) Shvo, Y.; Czarkie, D.; Rahamim Y.; Chodosh, D. F. J. Am. Chem. Soc. 1986, 108, 7400.
[37] (a) Casey, C. P.; Guan, H. J. Am. Chem. Soc. 2007, 129, 5816. For selected reviews, see: (b) Bullock, R. M. Angew. Chem., Int. Ed. 2007, 46, 7360. (c) Quintard, A.; Rodriguez, J. Angew. Chem., Int. Ed. 2014, 53, 4404.
[38] (a) Casey, C. P.; Guan, H. J. Am. Chem. Soc. 2009, 131, 2499. For a review, see: (b) Chakraborty, S.; Guan, H. Dalton Trans. 2010, 39, 7427.
[39] Zhang, H.-H.; Chen, D.-Z.; Zhang, Y.-H.; Zhang, G.-Q.; Liu, J.-B. Dalton Trans. 2010, 39, 1972.
[40] Lu, X.; Zhang, Y.-W.; Yun, P.; Zhang, M.-T.; Li, T.-L. Org. Biomol. Chem. 2013, 11, 5264.
[41] (a) Pagnoux-Ozherelyeva, A.; Pannetier, N.; Mbaye, M. D.; Gaillard, S.; Renaud, J.-L. Angew. Chem. Int. Ed. 2012, 51, 4976. (b) Moulin, S.; Dentel, H.; Pagnoux-Ozherelyeva, A.; Gaillard, S.; Poater, A.; Cavallo, L.; Lohier, J.-F.; Renaud, J.-L. Chem. Eur. J. 2013, 19, 17881.
[42] Mérel, D. S.; Elie, M.; Lohier, J.-F.; Gaillard, S.; Renaud, J.-L. ChemCatChem 2013, 5, 2939.
[43] Fleischer, S.; Zhou, S.-L.; Junge, K.; Beller, M. Angew. Chem., Int. Ed. 2013, 52, 5120.
[44] Berkessel, A.; Reichau, S.; von der Höh, A.; Leconte, N.; Neudörfl, J.-M. Organometallics 2011, 30, 3880.
[45] Zhou, S.; Fleischer, S.; Junge, K.; Beller, M. Angew. Chem., Int. Ed. 2011, 50, 5120.
[46] Fleischer, S.; Zhou, S.; Werkmeister, S.; Junge, K.; Beller, M. Chem. Eur. J. 2013, 19, 4997.
[47] Fleischer, S.; Werkmeister, S.; Zhou, S.; Junge, K.; Beller, M. Chem. Eur. J. 2012, 18, 9005.
[48] (a) Sui-Seng, C.; Freutel, F.; Lough, A. J.; Morris, R. H. Angew. Chem., Int. Ed. 2008, 47, 940. (b) Sui-Seng, C.; Haque, F. N.; Hadzovic, A.; Pütz, A.-M.; Reuss, V.; Meyer, N.; Lough, A. J.; Zimmer-De Iuliis, M.; Morris, R. H. Inorg. Chem. 2009, 48, 735.
[49] Lagaditis, P. O.; Sues, P. E.; Sonnenberg, J. F.; Wang, K. Y.; Lough, A. J.; Morris, R. H. J. Am. Chem. Soc. 2014, 136, 1367.
[50] Langer, R.; Leitus, G.; Ben-David, Y.; Milstein, D. Angew. Chem., Int. Ed. 2011, 50, 2120.
[51] Langer, R.; Iron, M. A.; Konstantinovski, L.; Diskin-Posner, Y.; Leitus, G.; Ben-David, Y.; Milstein, D. Chem. Eur. J. 2012, 18, 7196.
[52] Zell, T.; Ben-David, Y.; Milstein, D. Angew. Chem., Int. Ed. 2014, 53, 4685.
[53] (a) Chakraborty, S.; Dai, H.-G.; Bhattacharya, P.; Fairweather, N. T.; Gibson, M. S.; Krause, J. A.; Guan, H.-R. J. Am. Chem. Soc. 2014, 136, 7869. (b) Werkmeister, S.; Junge, K.; Wendt, B.; Alberico, E.; Jiao, H.; Baumann, W.; Junge, H.; Gallou, F.; Beller, M. Angew. Chem., Int. Ed. 2014, 53, 8722.
[54] Wienhöfer, G.; Westerhaus, F. A.; Junge, K.; Ludwig, R.; Beller, M. Chem. Eur. J. 2013, 19, 7701.
[55] Li, Y.-Y.; Yu, S.-L.; Wu, X.-F.; Xiao, J.-L.; Shen, W.-Y.; Dong, Z.-R.; Gao, J.-X. J. Am. Chem. Soc. 2014, 136, 4031.
[56] Hoyt, J. M.; Shevlin, M.; Margulieux, G. W.; Krska, S. W.; Tudge, M. T.; Chirik, P. J. Organometallics 2014, 33, 5781.
[57] Xie, J.-H.; Liu, X.-Y.; Xie, J.-B.; Wang, L.-X.; Zhou, Q.-L. Angew. Chem., Int. Ed. 2011, 50, 7329.
[58] After the acceptance of this paper, several significant progresses in iron-catalyzed hydrogenation was reported. For hydrogenation of olefins, see: (a) Gärtner, D.; Welther, A.; Rad, B. R.; Wolf, R.; von Wangelin, A. J. Angew. Chem., Int. Ed. 2014, 53, 3722.(b) Manna, K.; Zhang, T.; Carboni, M.; Abney, C. W.; Lin, W. J. Am. Chem. Soc. 2014, 136, 13182.(c) Guo, N.; Hu, M.-Y.; Feng, Y.; Zhu, S.-F. Org. Chem. Front. 2015, 2, 692.For hydrogenation of carbonyl compounds and imines, see: (d) Gorgas, N.; Stöger, B.; Veiros, L. F.; Pittenauer, E.; Allmaier, G.; Kirchner, K. Organometallics 2014, 33, 6905. (e) Lu, L.-Q.; Li, Y.; Junge, K.; Beller, M. J. Am. Chem. Soc. 2015, 137, 2763.

Outlines

/