ARTICLE

A Density Functional Theory Study of the Mechanism of Cu(II)-Catalyzed Synthesis of Pyrido[1,2-a]benzimidazoles

  • Du Lijuan ,
  • Wu Caihong ,
  • Gu Honghong ,
  • Li Juan
Expand
  • Department of Chemistry, Jinan University, Guangzhou 510632

Received date: 2015-02-06

  Revised date: 2015-03-14

  Online published: 2015-04-10

Supported by

Project supported by the National Natural Science Foundation of China (No. 21103072) and the Fundamental Research Funds for the Central Universities (No. 21615405).

Abstract

The reaction mechanism of Cu(II)-catalyzed synthesis of pyrido[1,2-a]benzimidazoles was theoretically investigated with the aid of density functional theory calculations (DFT) at the B3LYP level. Five possible mechanisms for the synthesis were proposed: (1) C—H-bond-breaking step preceding deprotonation of imino group, and finally C—N bond formation (Pathway a), (2) deprotonation of imino group preceding C—H-bond-breaking step, and finally C—N bond formation (Pathway b), (3) C—H-bond-breaking as the first step, then C—N bond formation preceding deprotonation of imino group (Pathway c), (4) the anti-imino-cupration mechanism (Pathway d), (5) the Friedel-Crafts alkylation mechanism (Pathway e). The calculation results indicate that the most favorable pathway involves C—H bond breaking by concerted metalation/deprotonation (CMD), followed by N—H deprotonation along the triplet state and C—N bond formation (Pathway a). A clear understanding of the reaction mechanism of pyrido[1,2-a]benzimidazoles formation should lead to more efficient synthetic strategies.

Cite this article

Du Lijuan , Wu Caihong , Gu Honghong , Li Juan . A Density Functional Theory Study of the Mechanism of Cu(II)-Catalyzed Synthesis of Pyrido[1,2-a]benzimidazoles[J]. Chinese Journal of Organic Chemistry, 2015 , 35(8) : 1726 -1732 . DOI: 10.6023/cjoc201501034

References

[1] Louillat, M. L.; Patureau, F. W. Chem. Soc. Rev. 2014, 43, 901.
[2] (a) Tsang, W. C. P.; Zheng, N.; Buchwald, S. L. J. Am. Chem. Soc. 2005, 127, 14560. (b) Nadres E. T.; Daugulis, O. J. Am. Chem. Soc. 2012, 134, 7. (c) Tsang, W. C. P.; Munday, R. H.; Brasche, G.; Zheng, N.; Buchwald, S. L. J. Org. Chem. 2008, 73, 7603. (d) Jordan-Hore, J. A.; Johansson, C. C. C.; Gulias, M.; Beck, E. M.; Gaunt, M. J. J. Am. Chem. Soc. 2008, 130, 16184. (e) Inamoto, K.; Saito, T.; Hiroya, K.; Doi, T. J. Org. Chem. 2010, 75, 3900. (f) Inamoto, K.; Saito, T.; Katsuno, M.; Sakamoto, T.; Hiroya, K. Org. Lett. 2007, 9, 2931. (g) Wasa, M.; Yu, J.-Q. J. Am. Chem. Soc. 2008, 130, 14058. (h) Youn, S. W.; Bihn, J. H.; Kim, B. S. Org. Lett. 2011, 13, 3738. (i) He, G.; Lu, C.; Zhao, Y.; Nack, W. A.; Chen, G. Org. Lett. 2012, 14, 2944. (j) He, G.; Zhao, Y.; Zhang, S.; Lu, C.; Chen, G. J. Am. Chem. Soc. 2012, 134, 3. (k) Haffemayer, B.; Gulisa, M.; Gaunt, M. J. Chem. Sci. 2011, 2, 312. (l) Xiao, Q.; Wang, W. H.; Liu, G.; Meng, F. K.; Chen, J. H.; Yang, Z.; Shi, Z. J. Chem. Eur. J. 2009, 15, 7292.
[3] Brasche, G.; Buchwald, S. L. Angew. Chem., Int. Ed. 2008, 47, 1932.
[4] (a) Hu, J.; Chen, S.; Sun, Y.; Yang, J.; Rao, Y. Org. Lett. 2012, 14, 5030. (b) Wang, X.; Jin, Y.; Zhao, Y.; Zhu, L.; Fu, H. Org. Lett. 2012, 14, 452.
[5] Brasche, G.; Buchwald, S. L. Angew. Chem., Int. Ed. 2008, 47, 1932.
[6] Tang, S. Y.; Gong, T. J.; Fu, Y. Sci. China Chem. 2013, 56, 619.
[7] Li, J.; Gu, H. H.; Wu, C. H.; Du, L. J. Dalton Trans. 2014, 43, 16769.
[8] For some examples, see: (a) Takeshita, H.; Watanabe, J.; Kimura, Y.; Kawakami, K.; Takahashi, H.; Takemura, M.; Kitamura, A.; Someya, K.; Nakajima, R. Bioorg. Med. Chem. Lett. 2010, 20, 3893. (b) Badaway, E.; Kappe, T. Eur. J. Med. Chem. 1995, 30, 327. (c) Kotovskaya, S. K.; Baskakova, Z. M.; Charushin, V. N.; Chupakhin, O. N.; Belanov, E. F.; Bormotov, N. I.; Balakhnin, S. M.; Serova, O. A. Pharm. Chem. J. 2005, 39, 574. (d) Yan, C. G.; Wang, Q. F.; Song, X. K.; Sun, J. J. Org. Chem. 2009, 74, 710. (e) Panda, K.; Suresh, J. R.; Ila, H.; Junjappa, H. J. Org. Chem. 2003, 68, 3498. (f) Dupuy, M.; Pinguet, F.; Chavignon, O.; Chezal, J. M.; Teulade, J. C.; Chapat, J. P.; Blache, Y. Chem. Pharm. Bull. 2001, 49, 1061. (g) Badawey, E.; Kappe, T Eur. J. Med. Chem. 1995, 30, 327.
[9] Wang, H.; Wang, Y.; Peng, C.; Zhang, J.; Zhu, Q. J. Am. Chem. Soc. 2010, 132, 13217.
[10] Masters, K. S.; Rauws, T. R. M.; Yadav, A. K.; Herrebout, W. A.; Veken, B. V.; Maes, B. U. W. Chem.-Eur. J. 2011, 17, 6315.
[11] Qu, G. R.; Liang, L.; Niu, H. Y.; Rao, W. H.; Guo, H. M.; Fossey, J. S. Org. Lett. 2012, 14, 4494.
[12] (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. (b) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. (c) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994, 98, 11623.
[13] (a) Fukui, K. J. Phys. Chem. 1970, 74, 4161. (b) Fukui, K. Acc. Chem. Res. 1981, 14, 363.
[14] (a) Baril-Robert, F.; Li, X. B.; Katz, M. J.; Geisheimer, A. R.; Leznoff, D. B. ; Patterson, H. Inorg. Chem. 2011, 50, 231. (b) Lu, X. Q.; Wu, C-M. L.; Wei, S. X.; Guo, W. Y. J. Phys. Chem. A, 2010, 114, 1178. (c) ?urek, J. M.; Paterson, M. J. J. Phys. Chem. A 2012, 116, 5375.
[15] (a) Ding, L.; Chung, L. W.; Morokuma, K. J. Chem. Theory Comput. 2014, 10, 668. (b) Stumetz, K. S.; Nadeau, J. T.; Cremeens, M. E. J. Org. Chem. 2013, 78, 10878.
[16] (a) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299. (b) Wadt, W. R.; Hay, P. J. J. Chem. Phys. 1985, 82, 284.
[17] Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta 1973, 28, 213.
[18] Ehlers, A. W.; Böhme, M.; Dapprich, S.; Gobbi, A.; Höllwarth, A.; Jonas, V.; Köhler, K. F.; Stegmann, R.; Veldkamp, A.; Frenking, G. Chem. Phys. Lett. 1993, 208, 111.
[19] Huzinaga, S. Gaussian Basis Sets for Molecular Calculations, Elsevier Science Pub. Co., Amsterdam, 1984.
[20] Roy, L. E.; Hay, P. J.; Martin, R. L. J. Chem. Theory Comput. 2008, 4, 1029.
[21] Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009, 113, 6378.
[22] Frisch, M. J. Gaussian 09, Revision C.01, Gaussian, Inc, Wallingford, CT, 2010.
[23] Braga, D.; Grepioni, F.; Tedesco, E.; Biradha, K.; Desiraju, G. R. Organometallics 1997, 16, 1846.
[24] Shiota, Y.; Yoshizawa, K. J. Chem. Phys. 2003, 118, 5872.
[25] See supporting information for the energy profiles of Pathway a for the substrates with substituent groups (OMe and F) at the meta position of the aniline.

Outlines

/