Articles

Alkenylation of Heterocycle C—H Catalyzed by CuI Nanoparticles

  • Wang Yuanyuan ,
  • You Qing ,
  • Tao Guide ,
  • Zhang Xinming ,
  • Zhang Wu
Expand
  • College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000

Received date: 2015-05-26

  Revised date: 2015-07-26

  Online published: 2015-08-25

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 20972002, 21272006).

Abstract

The heterocycles and their derivatives are important organic compounds which are widely existed in various natural products and synthetic compounds. Alkenylated heterocycles have great value in the synthesis of natural products, medicine molecules, photoelectric materials and high active polymers. Herein, an efficient method was developed for C—H functionalization of heterocycles to synthesize alkenylated heterocycles with CuI nanoparticles as catalyst, K3PO4 as base, 1,10-phenanthroline as ligand, diglyme as solvent under reflux in argon atmosphere for 24 h. The CuI nanoparticles can be recycled and reused without any significant decrease in catalytic activity. In addition, various aromatic heterocycles can be applied to our catalytic system, and acidity of heterocycle C—H bonds is critical to the reactivity. 18 corresponding trans-alkenylated heterocycles were obtained and characterized.

Cite this article

Wang Yuanyuan , You Qing , Tao Guide , Zhang Xinming , Zhang Wu . Alkenylation of Heterocycle C—H Catalyzed by CuI Nanoparticles[J]. Chinese Journal of Organic Chemistry, 2015 , 35(10) : 2086 -2094 . DOI: 10.6023/cjoc201505037

References

[1] (a) El-Nabi, H. A. A. Tetrahedron 1997, 53, 1813. (b) Maligres, P. E.; Waters, M. M.; Lee, J.; Reamer, R. A.; Askin, D. J. Org. Chem. 2002, 67, 1093. (c) Gong, H.; Yang, Y.-W.; Kuang, C.-X. Prog. Chem. 2014, 26, 592 (in Chinese). (龚浩, 杨义文, 匡春香, 化学进展, 2014, 26, 592.) (d) Liu, S.-S.; Jiang, K.; Pi, D.-W.; Zhou, H.-F.; Uozumi, Y.; Zou, K. Chin. J. Org. Chem. 2014, 34, 1369 (in Chinese). (刘森生, 姜坤, 皮单违, 周海峰, Yasuhiro Uozumi, 邹坤, 有机化学, 2014, 34, 1369.)
[2] (a) Altmann, K. H. Mini-Rev. Med. Chem. 2003, 3, 149. (b) Hofle, G.; Bedorf, N.; Steinmetz, H.; Schomburg, D.; Gerth, K.; Reichenbach, H. Angew. Chem., Int. Ed. Engl. 1996, 35, 1567. (c) Hormi, O. E. O.; Hirvel, L. Tetrahedron Lett. 1993, 34, 6463. (d) Ross, W. J.; Jamieson, W. B.; McCowen, M. C. J. Med. Chem. 1973, 16, 347.
[3] (a) Cao, H.; Zhan, H.-Y.; Shen, D.-S.; Zhao, H.; Liu, Y. J. Organomet. Chem. 2011, 696, 3086. (b) Stuart, D. R.; Alsabeh, P.; Kuhn, M.; Fagno, K. J. Am. Chem. Soc. 2010, 132, 18326. (c) Wasa, M.; Yu, J.-Q. J. Am. Chem. Soc. 2008, 130, 14058. (d) Ding, S.-T.; Jiao, N. J. Am. Chem. Soc. 2011, 133, 12374. (e) Nicolaou, K. C.; He, Y.; Roschangar, F.; King, N. P.; Vourloumis, D.; Li, T. Angew. Chem., Int. Ed. 1998, 37, 84. (f) Tang, B.; Bray, C. D.; Pattenden, G. Tetrahedron Lett. 2006, 47, 6401. (g) Bellina, F.; Carpita, A.; Santis, M. D.; Rossi, R. Tetrahedron Lett. 1994, 35, 6913.(h) Huang, Q.-H.; Fazio, A.; Dai, G.-X.; Campo, M. A.; Larock, R. C. J. Am. Chem. Soc. 2004, 126, 7460.
[4] Shen, G.-D.; Lv, X.; Qian, W.-X.; Bao, W.-L. Tetrahedron Lett. 2008, 49, 4556.
[5] Gottumukkala, A. L.; Derridj, F.; Djebbar, S.; Doucet, H. Tetrahedron Lett. 2008, 49, 2926.
[6] Mao, J.-C.; Xie, G.-L.; Zhan, J.-M.; Hua, Q.-Q.; Shi, D.-Q. Adv. Synth. Catal. 2009, 351, 1268.
[7] Francois, B.; Sabrina, L.; Florence, M.-B.; Sandrine, P. Synthesis 2009, 20, 3511.
[8] Sahnoun, S.; Messaoudi, S.; Brion, J.-D.; Alami, M. Eur. J. Org. Chem. 2010, 6097.
[9] Mousseau, J. J.; Bull, J. A.; Charette, A. B. Angew. Chem., Int. Ed. 2010, 49, 1115.
[10] Grimster, N. P.; Gauntlett, C.; Godfrey, C. R. A.; Gaunt, M. J. Angew. Chem., Int. Ed. 2005, 44, 3125.
[11] Xiang, S.-K; Wu, G.-L.; Zhang, B.; Cui, Y.-X.; Jiao, N. Tetrahedron Lett. 2012, 53, 3802.
[12] Besselièvre, F.; Piguel, S.; Mahuteau-Betzer, F.; Grierson, D. S. Org. Lett. 2008, 10, 4029.
[13] (a) Jia, Y.-X.; Kündig, E. P. Angew. Chem., Int. Ed. 2009, 48, 1636. (b) Brasche, G.; Buchwald, S. L. Angew. Chem., Int. Ed. 2008, 47, 1932. (c) Wang, H.-G.; Wang, Y.; Liang, D.-D.; Liu, L.-Y.; Zhang, J.-C.; Zhu, Q. Angew. Chem., Int. Ed. 2011, 50, 5678. (d) Perry, A.; Taylor, R. J. K. Chem. Commun. 2009, 22, 3249.
[14] (a) Zhang, L.; Ang, G. Y.; Chiba, S. Org. Lett. 2010, 12, 3682. (b) Klein, J. E. M. N.; Perry, A.; Pugh, D. S.; Taylor, R. J. K. Org. Lett. 2010, 12, 3446. (c) Gangadhararao, G.; Uruvakilli, A.; Swamy, K. C. K. Org. Lett. 2014, 16, 6060. (d) Pang, X. L.; Chen, C.; Su, X.; Li, M.; Wen, L.-R. Org. Lett. 2014, 16, 6228.
[15] Tang, B.-X.; Song, R.-J.; Wu, C.-Y.; Liu, Y.; Li, J.-H. J. Am. Chem. Soc, 2010, 132, 8900. (b) Li, Y.-M.; Xie, Y.-H.; Zhang, R.; Jin, K.; Wang, X.-N.; Duan, C.-Y. J. Org. Chem. 2011, 76, 5444. (c) Li, M.-Y.; Xie, Y.; Ye, Y.; Zou, Y.; Jiang, H.-H.; Zeng, W. Org. Lett. 2014, 16, 6232. (d) Lv, Y.-H.; Li, Y.; Xiong, T.; Pu, W.-Y.; Zhang, H.-W.; Zhang, Q. Chem. Commun. 2013, 49, 6439.
[16] (a) Zhang, W.; Guo, F.; Wang, F.; Zhao, N.; Liu, L.; Li, J.; Wang, Z.-H. Org. Biomol. Chem. 2014, 12, 5752. (b) Zhao, N.; Liu, L.; Wang, F.; Li, J.; Zhang, W. Adv. Synth. Catal. 2014, 356, 2575. (c) Zhang, W.; Zeng, Q.-L.; Zhang, X.-M.; Tian, Y.-J.; Yue, Y.; Guo, Y.-J.; Wang, Z.-H. J. Org. Chem. 2011, 76, 4741. (d) Zhang, W.; Tian, Y.-J.; Wang, Y.-Y.; Li, J.; Wang, Z.-H. Tetrahedron 2014, 70, 6120.
[17] (a) Zhang, Z.-H.; Wang, Z.-Y. J. Org. Chem. 2006, 71, 7485. (b) Zhang, J.-T.; Zhang, Z.-H.; Wang, Y.; Zheng, X.-Q.; Wang, Z.-Y. Eur. J. Org. Chem. 2008, 30, 5112. (c) Tang, L.; Guo, X.-F.; Yang, Y.; Zha, Z.-G.; Wang, Z.-Y. Chem. Commun. 2014, 50, 6145. (d) Tang, L.; Yang, Y.; Wen, L.-X.; Zhang, S.; Zha, Z.-G.; Wang, Z.-Y. Org. Chem. Front. 2015, 2, 114.
[18] (a) Chowdhury, S.; Roy, S. J. Org. Chem. 1997, 62, 199. (b) Das, J. P.; Roy, S. J. Org. Chem. 2002, 67, 7861.
[19] Kundu, N. G.; Nandi, B. J. Org. Chem. 2001, 61, 1761.
[20] Abbotto, A.; Bradamante, S.; Pagani, G. A. J. Org. Chem. 1996, 66, 4563.
[21] Das, B.; Reddy, G. C.; Balasubramanyam, P.; Salvanna, N. Tetrahedron 2012, 68, 300.

Outlines

/