Chinese Journal of Organic Chemistry >
Transition Metal Catalyzed Isomerization Reaction of Allylic Alcohols
Received date: 2015-09-24
Revised date: 2015-10-23
Online published: 2015-11-03
Supported by
Project supported by the National Natural Science Foundation of China (No. 21472124).
Carbonyl compounds are key synthetic intermediates in the fields of medicine, pesticide, perfumes and cosmetics. In recent years, transition metal catalyzed isomerization of allylic alcohols to synthesize various carbonyl compounds has drawn much attention and been explored extensively, due to their high atomic economy and unique superiority. The recent development of the isomerization reactions of allylic alcohols catalyzed by various transition metals is summarized.
Zhong Yexin , Ren Kai , Xie Xiaomin , Zhang Zhaoguo . Transition Metal Catalyzed Isomerization Reaction of Allylic Alcohols[J]. Chinese Journal of Organic Chemistry, 2016 , 36(2) : 258 -273 . DOI: 10.6023/cjoc201509030
[1] (a) Yanovskaya, L. A.; Shakhidayatov, K. Russ. Chem. Rev. 1970, 39, 859. (b) Uma, R. C.; Crévisy; Grée, R. Chem. Rev. 2003, 103, 27. (c) van der Drift, R. C.; Bouwman, E.; Drent, E. J. Organoment. Chem. 2002, 650, 1. (d) Manzini, C.; Poater, A.; Nelson, D. J.; Cavallo, L.; Nolan, S. P. Chem. Sci. 2014, 5, 180. (e) Lorenzo-Luis, P.; Romerosa, A.; Serrano-Ruiz, M. ACS Catal. 2012, 2, 1079.
[2] Delaby, R. Compt. Rend. 1926, 182, 140.
[3] Emerson, G. F.; Pettit, R. J. Am. Chem. Soc. 1962, 84, 4591.
[4] Strauss, J. U.; Ford, P. W. Tetrahedron Lett. 1975, 33, 2917.
[5] Branchadell, V.; Crévisy, C.; Grée, R. Chem.-Eur. J. 2004, 10, 5795.
[6] Strohmeier, W.; Weigelt, L. J. Organomet. Chem. 1975, 86, C17.
[7] Crabtree, R. H.; Felkin, H.; Morris, G. E. J. Organomet. Chem. 1977, 141, 205.
[8] Mantilli, L.; Mazet, C. Chimia 2009, 63, 35.
[9] Sato, S. H.; Matsuda, I.; Izumi, Y. Tetrahedron Lett. 1985, 26, 4229.
[10] Bergens, S. H.; Bosnich, B. J. Am. Chem. Soc. 1991, 113, 958.
[11] de Bellefon, C.; Tanchoux, N.; Caravieilhes, S.; Grenouillet, P.; Hessel, V. Angew. Chem., Int. Ed. 2000, 39, 3442.
[12] Knight, D. A.; Schull, T. L. Synth. Commun. 2003, 33, 827.
[13] Ahlsten, N.; Lundberg, H.; Martín-Mature, B. Green Chem. 2010, 12, 1628.
[14] Chin, C. S.; Lee, S. Y.; Park, J.; Kim, S. J. Am. Chem. Soc. 1988, 110, 8244.
[15] Uma, R.; Davies, M. K.; Crévisy, C.; Grée, R. Eur. J. Org. Chem. 2001, 3141.
[16] Trost, B. M.; Kulawiec, R. J. J. Am. Chem. Soc. 1993, 115, 2027.
[17] Sasson, Y.; Zoran, A.; Blum, J. J. Mol. Catal. 1979, 6, 289.
[18] Dedieu, M.; Pascal, Y.-L. J. Mol. Catal. 1980, 9, 59
[19] Krompiec, S.; Suwinski, J.; Grobelny, R. J. Mol. Catal. 1994, 89, 303.
[20] Stunnenberg, F.; Niele, F. G. M.; Drent, E. Inorg. Chim. Acta. 1994, 222, 225.
[21] Markó, I. E.; Gautier, A.; Tsukazaki, M.; Llobet, A.; Plantalech Mir, E.; Urch, C. J.; Brown, S. M. Angew. Chem., Int. Ed. 1999, 38, 1960.
[22] Alper, H.; Hachem, K. J. Org. Chem. 1980, 45, 2269.
[23] Trost, B. M.; Kuliawec, R. J. Tetrahedron Lett. 1991, 32, 3039.
[24] Bäckvall, J.-E.; Andreasson, U. Tetrahedron Lett. 1993, 34, 5459.
[25] Martín-Mature, B.; Bogar, K.; Edin, M.; Kaynak, F. B.; Bäckvall, J. E. Chem.-Eur. J. 2005, 11, 5832.
[26] Ito, M.; Kitahara, S.; Ikariya, T. J. Am. Chem. Soc. 2005, 127, 6172.
[27] Kechaou-Perrot, M.; Vendier, L.; Bastin, S.; Sotiropoulos, J.-M.; Miqueu, K.; Menéndez-Rodríguez, L.; Crochet, P.; Cadierno, V.; Igau, A. Organometallics 2014, 33, 6294
[28] (a) Cadierno, V.; Garca-Garrido, S. E.; Gimeno, J.; Varela-Álvarez, A.; Sordo, J. A. J. Am. Chem. Soc. 2006, 128, 1360. (b) García-Garrido, S. E.; Gimeno, J.; Suárez, F. J. Organometallics 2011, 30, 2893.
[29] da Costa, A. P.; Mata, J. A.; Royo, B.; Peris, E. Organometallics. 2010, 29, 1832.
[30] Azua, A.; Sanz, S.; Peris, E. Organometallics 2010, 29, 3661.
[31] Díez, J.; Gimeno, J.; Ledós, A.; Suáez, F, J.; Vicent, C. ACS Catal. 2012, 2, 2087.
[32] Kraus, M. Collect. Czech. Chem. Commun. 1972, 37, 460.
[33] Sadeghmoghaddam, E.; Gu, H.; Shon, Y.-S. ACS Catal. 2012, 2, 1838.
[34] Larionov, E.; Lin, L.-Q.; Guénée, L.; Mazet, C. J. Am. Chem. Soc. 2014, 136, 16882.
[35] Goetz, R. W.; Orchin, M. J. Am. Chem. Soc. 1963, 85, 1549.
[36] Corain, B. Gazz. Chim. Ital. 1972, 102, 687.
[37] Corain, B.; Puosi, G. J. Catal. 1973, 30, 403.
[38] Bricout, H.; Monflier, E.; Carpentier, J. F.; Mortreux, A. Eur. J. Inorg. Chem. 1998, 1998, 1739.
[39] Deeming, A. J.; Hasso, S. J. Organomet. Chem. 1976, 114, 313.
[40] Batuecas, M.; Esteruelas, M. A.; Garcia Yebra, C.; Onate, E. Organometallics 2010, 29, 2166.
[41] Tatsumi, T.; Hashimoto, K.; Tominaga, H.; Mizuta, Y.; Hata, K.; Hidai, M.; Uchida, Y. J. Organomet. Chem. 1983, 252, 105.
[42] Botteghi, C.; Giacomelli, G. Gazz. Chim. Ital. 1976, 106, 1131.
[43] Otsuka, S.; Tani, K. Synthesis 1991, 665.
[44] Tanaka, K.; Fu, G. C. J. Org. Chem. 2001, 66, 8177.
[45] Mantilli, L.; Gerard, D.; Torche, S.; Besnard, C.; Mazet, C. Angew. Chem., Int. Ed. 2009, 48, 5143.
[46] Li, J. Q.; Peters, B.; Andersson, P. G. Chem.-Eur. J. 2011, 17, 11143.
[47] Bizet, V.; Pannecoucke, X.; Renaud, J. L.; Cahard, D. Angew. Chem., Int. Ed. 2012, 51, 6467.
[48] Wu, R.; Beauchamps, M. G.; Laquidara, J. M.; Sowa, Jr, J. R. Angew. Chem., Int. Ed. 2012, 52, 2106.
[49] Arai, N.; Sato, K.; Azuma, K.; Ohkuma, T. Angew. Chem., Int. Ed. 2013, 52, 7500.
[50] Li, H,-H.; Mazet, C. J. Am. Chem. Soc. 2015, 137, 10720.
[51] Ohkuba, K.; Ohgushi, T.; Kusaga, T.; Yoshinaga, K. Inorg. Nucl. Chem. Lett. 1977, 13, 631
[52] Kitamura, M.; Manabe, K.; Noyori, R.; Takaya, H. Tetrahedron Lett. 1987, 28, 4719
[53] Fernández-Zúmel, M. A.; Lastra-Barreina, B.; Scheele, M.; Diez, J.; Crochet, P.; Gimeno, J. Dalton Trans. 2010, 39, 7780.
[54] Corkum, E. G.; Kalapugama, S.; Hass, M. J.; Bergens, S. H. RSC Adv. 2012, 2, 3473.
[55] Ren, K.; Zhang, L.; Hu, B.; Zhao, M.-M.; Tu, Y.-H.; Xie, X.-M.; Zhang, T.-Y.; Zhang, Z.-G. ChemCatChem 2013, 5, 1317
[56] Crévisy, C.; Wietrich, M.; Le Boulaire, V.; Uma, R.; Grée, R. Tetrahedron Lett. 2001, 42, 395.
[57] (a)Wang, M.; Li, C.-J. Tetrahedron Lett. 2002, 43, 3589. (b) Yang, X.-F.; Wang, M.; Varma, R. S.; Li, C.-J. Org. Lett. 2003, 5, 657.
[58] Cuperly, D.; Petrignet, J.; Crévisy, C.; Grée, R. Chem.-Eur. J. 2006, 12, 3261.
[59] Bartoszewicz, A.; Livendahl, M.; Martín-Mature, B. Chem.-Eur. J. 2008, 14, 10547.
[60] Mizuno, A.; Kusama, H.; Iwasawa, N. Chem.-Eur. J. 2010, 16, 8248.
[61] Bartoszewicz, A.; Martín-Matute, B. Org. Lett. 2009, 11, 1749.
[62] Ahlsten, N.; Bartoszewicz, A.; Agrawal, S.; Martín-Matute, B. Synthesis 2011, 2600.
[63] Ahlsten, N.; Bermejo, G. A.; Martín-Matute, B. Angew. Chem., Int. Ed. 2013, 52, 6273.
[64] Gómez, A, B.; Erbing, E.; Batuecas, M.; Vázquez-Romero, A.; Martín-Matute, B. Chem.-Eur. J. 2014, 20, 10703.
[65] Vazquez-Romero, A.; Bermejo, G. A.; Martín-Matute, B. ACS Catal. 2015, 5, 708
[66] Cadierno, V.; Francos, J.; Gimeno, J.; Nebra, N. Chem. Commun. 2007, 2, 536.
[67] Sahli, Z.; Sundararaju, B.; Achard, M.; Bruneau, C. Org. Lett. 2011, 13, 3964.
[68] Bizet, V.; Pannecoucke, X.; Renaud, J. L.; Cahard, D. Adv. Synth. Catal. 2013, 355, 1394.
[69] Shoola, C. O.; Del Mactro, T.; Wu, R.-Q.; Sowa. Jr, J. R. Eur. J. Org. Chem. 2015, 8, 1670.
[70] Colbon, P.; Ruan, J.-R.; Purdie, M.; Mulholl, K.; Xiao, J.-L. Org. Lett. 2011, 13, 5456.
[71] Li, H.-Q.; Achard, M.; Bruneau, C.; Sortais, J.-B.; Darcel, C. RSC Adv. 2014, 4, 25892.
[72] Ren, K.; Hu, B.; Zhao, M.-M.; Tu, Y.-H.; Xie, X.-M.; Zhang, Z.-G. J. Org. Chem. 2014, 79, 2170.
[73] Nakamura, Y. S.; Ohta, T. S.; Oe, Y. H. Chem. Commun. 2015, 51, 7459.
/
〈 |
|
〉 |