Chinese Journal of Organic Chemistry >
Base-Stabilized 1-Hydrosilaimine: Reactivity of Diaminochlorosilane toward N-Heterocyclic Carbenes
Received date: 2015-11-02
Revised date: 2015-11-21
Online published: 2015-12-07
Supported by
Project supported by the Fundamental Research Funds for the Central Universities (No. KJQN201551), the National Natural Science Foundation of China (No. 21402094), the Natural Science Foundation of Jiangsu Province (No. BK20140678), the National Key Basic Research Program of China (973 Program, No. 2012CB821600).
Studies on the formation of silaimines are among the most fascinating topics in organosilicon chemistry. The first route to silaimine via eliminaition of Me3SiCl from diaminochlorosilanes is reported. Reaction of aminodichlorosilane ArN(SiMe3)SiHCl2 (1) (Ar=2,6-i-Pr2C6H3) with ArN(SiMe3)Li in Et2O at -78 ℃ followed by stirring the mixture for 5 h at room temperature afforded diaminochlorosilane [ArN(SiMe3)]2SiHCl (2). Compound 2 has been fully characterized by 1H NMR, 13C NMR, 29Si NMR, IR and elemental analysis. Reactivity of 2 with different N-heterocyclic carbenes has been examined. It was found that 2 did not react with sterically hindered N-heterocyclic carbenes (NHC), 3-tert-butylimidazol-2-ylidene (ItBu) and 1,3-diisopropyl-4,5-dimethyl-imidazol-2-ylidene (IiPr) at room temperature or under reflux conditions. However, compound 2 could react with one equivalent of 1,3,4,5-tetramethyl-imidazol-2-ylidene (IMe4) to give base-stabilized 1-hydrosilaimine 3. Compound 3 can be viewed as the elimination product from 2 through loss of Me3SiCl, as the small IMe4 coordinate to 2 to form a hypervalent silicon species.
Key words: chlorosilanes; N-heterocyclic carbenes; silaimines
Cui Haiyan , Cui Chunming . Base-Stabilized 1-Hydrosilaimine: Reactivity of Diaminochlorosilane toward N-Heterocyclic Carbenes[J]. Chinese Journal of Organic Chemistry, 2016 , 36(3) : 626 -629 . DOI: 10.6023/cjoc201511002
[1] (a) Xiong, Y.; Yao, S.; Driess, M. Angew. Chem., Int. Ed. 2013, 52, 4302.
(b) Fischer, R. C.; Power, P. P. Chem. Rev. 2010, 110, 3877.
(c) Power, P. P. Chem. Rev. 1999, 99, 3463.
[2] (a) Muck, F. M.; Ulmer, A.; Baus, J. A.; Burschka, C.; Tacke, R. Eur. J. Inorg. Chem. 2015, 1860.
(b) Cui, H.; Ma, B.; Cui, C. Organometallics 2012, 31, 7339.
(c) Kocher, N.; Henn, J.; Gostevskii, B.; Kost, D.; Kalikhman, I.; Engels, B.; Stalke, D. J. Am. Chem. Soc. 2004, 126, 5563.
(d) Kocher, N.; Selinka, C.; Leusser, D.; Kost, D.; Kalikhman, I.; Stalke, D. Z. Anorg. Allg. Chem. 2004, 630, 1777.
(e) Niessmann, J.; Klingebiel, U.; Schäfer, M.; Boese, R. Organometallics 1998, 17, 947.
(f) Denk, M.; Hayashi, R.; West, R. J. Am. Chem. Soc. 1994, 116, 10813.
(g) Stalke, D.; Klingebiel, U.; Sheldrick, G. M. J. Organomet. Chem. 1988, 344, 37.
[3] (a) Wiberg, N.; Schurz, K.; Fischer, G. Angew. Chem., Int. Ed. Engl. 1985, 24, 1053.
(b) Wiberg, N.; Schurz, K.; Reber, G.; Müller, G. J. Chem. Soc., Chem., Commun. 1986, 591.
(c) Hesse, M.; Klingebiel, U. Angew. Chem., Int. Ed. Engl. 1986, 25, 649.
[4] (a) Azhakar, R.; Roesky, H. W.; Holstein, J. J.; Pröpper, K.; Dittrich, B. Organometallics 2013, 32, 358.
(b) Samuel, P. P.; Azhakar, R.; Ghadwal, R. S.; Sen, S. S.; Roesky, H. W.; Granitzka, M.; Matussek, J.; Herbst-Irmer, R.; Stalke, D. Inorg. Chem. 2012, 51, 11049.
(c) Zhang, S.-H.; Yeong, H.-X.; So, C.-W. Chem.-Eur. J. 2011, 17, 3490.
(d) Kong, L.; Cui, C. Organometallics 2010, 29, 5738.
(e) Iwamoto, T.; Ohnishi, N.; Gui, Z.; Ishida, S.; Isobe, H.; Maeda, S.; Ohno, K.; Kira, M. New J. Chem. 2010, 34, 1637.
[5] (a) Khan, S.; Sen, S. S.; Kratzert, D.; Tav?ar, G.; Roesky, H. W.; Stalke, D. Chem.-Eur. J. 2011, 17, 4283.
(b) Ghadwal, R. S.; Roesky, H. W.; Schulzke, C.; Granitzka, M. Organometallics 2010, 29, 6329.
[6] Cui, H.; Cui, C. Chem.-Asian J. 2011, 6, 1138.
[7] (a) Hssf, M.; Schmedake, T. A.; West, R. Acc. Chem. Res. 2000, 33, 704.
(b) Driess, M.; Block, S.; Brym, M.; Gamer, M. T. Angew. Chem., Int. Ed. 2006, 45, 2293.
[8] Denk, M.; Lennon, R.; Hayashi, R.; West, R.; Belyakov, A. V.; Verne, H. P.; Haaland, A.; Wagner, M.; Metzler, N. J. Am. Chem. Soc. 1994, 116, 2691.
[9] (a) Inoue, S.; Leszczyńska, K., Angew. Chem., Int. Ed. 2012, 51, 8589.
(b) Asay, M.; Inoue, S.; Driess, M., Angew. Chem., Int. Ed. 2011, 50, 9589.
(c) Jutzi, P.; Leszczyńska, K.; Neumann, B.; Schoeller, W. W.; Stammler, H.-G. Angew. Chem., Int. Ed. 2009, 48, 2596.
(d) Driess, M.; Yao, S.; Brym, M.; van Wüllen, C.; Lentz, D. J. Am. Chem. Soc. 2006, 128, 9628.
(e) So, C.-W.; Roesky, H. W.; Magull, J.; Oswald, R. B. Angew. Chem., Int. Ed. 2006, 45, 3948.
(f) Kira, M.; Ishida, S.; Iwamoto, T.; Kabuto, C. J. Am. Chem. Soc. 1999, 121, 9722.
(g) Gehrhus, B.; Lappert, M. F.; Heinicke, J.; Boese, R.; Bläser, D. J. Chem. Soc., Chem. Commun. 1995, 1931.
[10] Cui, H.; Shao, Y.; Li, X.; Kong, L.; Cui, C. Organometallics 2009, 28, 5191.
[11] Ghadwal, R. S.; Roesky, H. W.; Merkel, S.; Henn, J.; Stalke, D. Angew. Chem., Int. Ed. 2009, 48, 5683.
[12] (a) Agou, T.; Hayakawa, N.; Sasamori, T.; Matsuo, T.; Hashizume, D.; Tokitoh, N. Chem.-Eur. J. 2014, 20, 9246.
(b) Inoue, S.; Eisenhut, C. J. Am. Chem. Soc. 2013, 135, 18315.
(c) Al-Rafia, S. M. I.; McDonald, R.; Ferguson, M. J.; Rivard, E. Chem.-Eur. J. 2012, 18, 13810.
(d) Tanaka, H.; Ichinohe, M.; Sekiguchi, A. J. Am. Chem. Soc. 2012, 134, 5540.
(e) Ghadwal, R. S.; Roesky, H. W.; Merkel, S.; Henn, J.; Stalke, D. Angew. Chem., Int. Ed. 2009, 48, 5683.
(f) Filippou, A. C.; Chernov, O.; Schnakenburg, G. Angew. Chem., Int. Ed. 2009, 48, 5687.
[13] (a) Filippou, A. C.; Chernov, O.; Blom, B.; Stumpf, K. W.; Schnakenburg, G. Chem.-Eur. J. 2010, 16, 2866.
(b) Gao, Y.; Zhang, J.; Hu, H.; Cui, C. Organometallics 2010, 29, 3063.
[14] Cui, H.; Cui, C. Dalton Trans. 2011, 40, 11937.
[15] Scott, N. M.; Dorta, R.; Stevens, E. D.; Correa, A.; Cavallo, L.; Nolan, S. P. J. Am. Chem. Soc. 2005, 127, 3516.
[16] Kuhn, N.; Kratz, T. Synthesis 1993, 561.
/
〈 |
|
〉 |