Chinese Journal of Organic Chemistry >
Research Progress on the Synthesis and Application of Cyclopentadiene Derivatives
Received date: 2015-12-09
Revised date: 2016-01-22
Online published: 2016-02-02
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 51003009, 20772014), and the Fundamental Research Funds for the Central Universities of China (No. DUT14LK32) and the Science and Technology Research Foundation of Education Department of Liaoning Province (No. L2014033).
Cyclopentadiene and its derivatives are a type of important small molecule cyclic olefin compounds, which have been widely applied in many fields such as synthesis of metallocene compounds, synthesis of organic intermediates and organic photoelectric materials. Based on our recent research results, in this review, the research progress on the synthesis of cyclopentadiene derivatives and the application of some typical cyclopentadiene derivatives in the field of organic synthesis are summarized.
Ye Junwei , Huang Xueming , Wang Xiaoxiao , Zheng Ting , Gao Yuan , Gong Weitao , Ning Guiling . Research Progress on the Synthesis and Application of Cyclopentadiene Derivatives[J]. Chinese Journal of Organic Chemistry, 2016 , 36(6) : 1299 -1307 . DOI: 10.6023/cjoc201512012
[1] Tjahjono, A. M.; Feng, G.; Hermanto, M. W.; Cechao, F.; Garland, M. RSC Adv. 2014, 4, 22194.
[2] Feng, Y.-S.; Hao, J.; Liu, W.-W.; Yao, Y.-J.; Cheng, Y.; Xu, H.-J. Chin. Chem. Lett. 2015, 26, 709.
[3] Hoops, M. D.; Ault, B. S. J. Am. Chem. Soc. 2009, 131, 2853.
[4] Levandowski, B. J.; Houk, K. N. J. Org. Chem. 2015, 80, 3530.
[5] Desimoni, G.; Faita, G.; Toscanini, M.; Boiocchi, M. Chem. Eur. J. 2007, 13, 9478.
[6] McGivern, W. S.; Manion, J. A.; Tsang, W. J. Phys. Chem. A 2006, 110, 12822.
[7] Yang, C.; Cho, S.; Chiechi, R. C.; Walker, W.; Coates, N. E.; Moses, D.; Heeger, A. J.; Wudl, F. J. Am. Chem. Soc. 2008, 130, 16524.
[8] Suess-Fink, G. Dalton Trans. 2010, 39, 1673.
[9] Kim, H.; Choi, T.; Cha, M. C.; Chang, J. Y. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3646.
[10] Rettenmeier, E.; Schuster, A. M.; Rudolph, M.; Rominger, F.; Gade, C. A.; Hashmi, A. S. K. Angew. Chem. Int. Ed. 2013, 52, 5880.
[11] Geng, W. Z.; Wang, C.; Guang, J.; Hao, W.; Zhang, W.-X.; Xi, Z. F. Chem. Eur. J. 2013, 19, 8657.
[12] Wirtanen, T.; Muuronen, M.; Melchionna, M.; Patzschke, M.; Helaja, J. J. Org. Chem. 2014, 79, 10269.
[13] Fang, Z. X.; Liu, J. Q.; Liu, Q.; Bi, X. H. Angew. Chem. Int. Ed. 2014, 53, 7209.
[14] Yang, L. J.; Ye, J. W.; Xu, L. F.; Yang, X. Y.; Gong, W. T.; Lin, Y.; Ning, G. L. RSC Adv. 2012, 2, 11529.
[15] Zhang, X. D.; Ye, J. W.; Xu, L. F.; Yang, L. J.; Deng, D.; Ning, G. L. J. Lumin. 2013, 139, 28.
[16] Ye, J. W.; Deng, D.; Gao, Y.; Wang, X. X.; Yang, L. J.; Lin, Y.; Ning, G. L. Spectrochim. Acta, Part A 2015, 134, 22.
[17] Ye, J.W.; Gao, Y.; He, L.; Tan, T. T.; Chen, W.; Liu, Y.; Wang, Y.; Ning, G. L. Dyes Pigm. 2016, 124, 145.
[18] Ye, J. W.; Xu, L. F.; Gao, Y.; Wang, H.; Ding, Y. Z.; Deng, D.; Gong, W. T.; Ning, G. L. Synth. Met. 2013, 175, 170.
[19] Ning, G. L.; Li, X. C.; Munakata, M.; Gong, W. T.; Maekawa, M.; Kamikawa, T. J. Org. Chem. 2004, 69, 1432.
[20] Gong, W. T.; Ning, G. L.; Li, X. C.; Wang, L.; Lin, Y. J. Org. Chem. 2005, 70, 5768.
[21] Yang, L. J.; Ye, J. W.; Gao, Y.; Deng,D.; Gong, W. T.; Li, Y.; Ning, G. L.; Tetrahedron Lett. 2013, 54, 2967.
[22] Ye, J. W.; Zhang, X. D.; Deng, D.; Ning, G. L.; Liu, T. Q.; Zhuang, M. L.; Yang, L. J.; Gong, W. T.; Lin, Y. RSC Adv. 2013, 3, 8232.
[23] Zhang, X. D.; Ye, J. W.; Wang, S. N.; Gong, W. T.; Lin, Y.; Ning, G. L. Org. Lett. 2011, 13, 3608.
[24] Yang, L. J.; Ye, J. W.; Gao, Y.; Deng, D.; Lin, Y.; Ning, G. L. Eur. J. Org. Chem. 2014, 515
[25] Gong, W. T.; Na, D.; Mehdi, H.; Ye, J. W.; Ning, G. L. J. Organomet. Chem. 2014, 772~773, 314.
[26] Ye, J. W.; Wang, X. X.; Gao, Y.; Yang, L. J.; Lin, Y.; Ning, G. L. Chin. J. Org. Chem. 2015, 35, 373 (in Chinese). (叶俊伟, 王潇潇, 高远, 杨立健, 林源, 宁桂玲, 有机化学, 2015, 35, 373.)
[27] Li, G.; Gong, W.-T.; Ye, J.-W.; Lin, Y.; Ning, G.-L. Synth. Commun. 2012, 42, 480.
[28] Li, G.; Gong, W. T.; Ye, J. W.; Lin, Y.; Ning, G. L. Chin. J. Org. Chem. 2011, 31, 216 (in Chinese). (李刚, 贡卫涛, 叶俊伟, 林源, 宁桂玲, 有机化学, 2011, 31, 216.)
[29] Peng, S. Y.; Gao, T.; Sun, S. F.; Peng, Y. H.; Wu, M. H.; Guo, H. B.; Wang, J. Adv. Synth. Catal. 2014, 356, 319.
[30] Dömling, A. Chem. Rev. 2006, 106, 17.
[31] Chen, L.; Mahmoud, S. M.; Yin, X. D.; Lalancette, R. A.; Pietrangelo A. J. Am. Chem. Soc. 2013, 15, 5970.
[32] Loh, C. C. J.; Enders, D. Chem. Eur. J. 2012, 18, 10212.
[33] Becker, L.; Burlakov, V. V.; Arndt, P.; Spannenberg, A.; Baumann, W.; Jiao, H. J.; Rosenthal, U. Chem. Eur. J. 2013, 19, 4230.
[34] Kryukov, S. I.; Dzyuba, I. V.; Smirnov, V. A. Neftekhimiya 1991, 31, 386.
[35] Braga, A. A. C.; Morgon, N. H.; Ujaque, G.; Maseras, F. J. Am. Chem. Soc. 2005,127, 9298.
[36] Du, Y. M.; Li, C. Y.; Zhang J. W.; Wang, W.; Kang, J. P.; Lv, J. Chem. J. Chin. Univ. 2014, 35, 755 (in Chinese). (杜咏梅, 李春迎, 张建伟, 王 伟, 亢建平, 吕剑, 高等学校化学学报, 2014, 35, 755.)
[37] Li, L.; Cai, Z.; Shen, B.; Xin, Z.; Ling, H. Chem. Eng. Technol. 2011, 34, 1468.
[38] Khambata, B. S.; Wassermann, A. J. Chem. Soc. 1939, 375.
[39] Krupka, J. Pet. Coal. 2010, 52, 290.
[40] Goswami, T.; Das, D. K.; Goswami, D. Chem. Phys. Lett. 2013, 558, 1.
[41] Herndon, W. C.; Grayson, C. R.; Manion, J. M. J. Org. Chem. 1967, 32, 526.
[42] Wang, W.; Chen, J.-G.; Song, L.-P.; Liu, Z.-T.; Liu, Z.-W.; Lu, J.; Xiao, J. L.; Hao, Z. P. Energy Fuels 2013, 27, 6339.
[43] Wang, W. T.; Cong, Y.; Chen, S.; Sun, C. X.; Wang, X. D.; Zhang, T. Top. Catal. 2015, 58, 350.
[44] Mendez, I. D.; Klimova, E.; Klimova, T.; Hernández, O. S.; Martínez, G. M. J. Organomet. Chem. 2003, 681, 115.
[45] Kollenz, G.; Ebner, S. Sci. Synth. 2006, 23, 271.
[46] Scheer, A. M.; Mukarakate, C.; Robichaud, D. J.; Nimlos, M. R.; Carstensen, H.-H.; Barney Ellison, G. J. Chem. Phys. 2012, 136, 044309.
[47] Koch, R.; Blanch, R. J.; Wentrup, C. J. Org. Chem. 2014, 79, 6978.
[48] Siemeling, U.; Neumann, B.; Stammler, H.-G.; Salmon, A. Z. Anorg. Allg. Chem. 2002, 628, 2315.
[49] Morris, D. M.; McGeagh, M.; De Peña, D.; Merola, J. S. Polyhedron 2014, 84, 120.
[50] Pal, R.; Mukherjee, S.; Chandrasekhar, S.; Guru Row, T. N. J. Phys. Chem. A 2014, 118, 3479.
[51] Kaleta, K.; Strehler, F.; Hildebrandt, A.; Beweries, T.; Arndt, P.; Rüffer, T.; Spannenberg, A.; Lang, H.; Rosenthal, U. Chem. Eur. J. 2012, 18, 12672.
[52] Mehdi, G.; Ali-Tabatabaei, G.; Maciej, K. J. Org. Chem. 2013, 78, 2611.
[53] Wang, Y. X.; Duan, X. M.; Wang, Q.; Li, Y. S.; Liu, J. Y. Acta Chim. Sinica 2011, 69(18), 2085 (in Chinese). (王永霞, 段雪梅, 王钦, 李悦生, 刘靖尧, 化学学报, 2011, 69(18), 2085.)
[54] Wu, X. J.; Zeng, X. C. J. Am. Chem. Soc. 2009, 131, 14246.
[55] Piper, T. S.; Wilkinson, G. J. Inorg. Nucl. 1956, 3(2), 104.
[56] Jiang, X. J.; Chen, L. M.; Wang, X.; Long, L.; Xiao, Z. Y.; Liu, X. M. Chem. Eur. J. 2015, 21, 13065.
[57] Loughrey, B. T.; Williams, M. L.; Carruthers, T. J.; Parsons, P. G.; Healy, P. C. Aust. J. Chem. 2010, 63, 245.
[58] Micallef, L. S.; Loughrey, B. T.; Healy, P. C.; Parsons, P. G.; Williams, M. L. Organometallics 2011, 30, 1395.
[59] Schaarschmidt, D.; Lang, H. Organometallics 2013, 32, 5668.
[60] Ogasawara, M.; Watanabe, S.; Nakajima, K.; Takahashi, T. J. Am. Chem. Soc. 2010, 132, 2136.
[61] Zheng, C.; You, S.-L. RSC Adv. 2014, 4, 6173.
[62] Siegel, S.; Schmalz, H.-G. Angew. Chem., Int. Ed. 1997, 36, 2456.
[63] Gao, D.-W.; Shi, Y.-C.; Gu, Q.; Zhao, Z.-L.; You, S.-L. J. Am. Chem. Soc. 2013, 135, 86.
[64] Pi, C.; Li, Y.; Cui, X. L.; Zhang, H.; Han, Y. B.; Wu, Y. J. Chem. Sci. 2013, 4, 2675.
[65] Pi, C.; Cui, X. L.; Liu, X. Y.; Guo, M. X.; Zhang, H. Y.; Wu, Y. J. Org. Lett. 2014, 16, 5164.
[66] Plate, A. F.; Stanko, V. I. Bull. Acad. Sci. USSR, Div. Chem. Sci. 1956, 5, 1173.
[67] Athawale, V. D.; Rathi, S. C. J. Appl. Polym. Sci. 1997, 66 , 1399.
[68] Fernando, C.-L.; Santiago, G.-Q.; Claudia, A.; Keane, M. A. Appl. Catal. A 2014, 473, 41.
[69] Shi, Y.; Wilmot, J. T.; Nordstrøm, L. U.; Tan, D. S.; Gin, D. Y. J. Am. Chem. Soc. 2013, 135,14313.
[70] Samoshin, A. V.; Hawker, C. J.; Read de Alaniz, J. ACS Macro. Lett. 2014, 3, 753.
[71] Bian, S.; Scott, A. M.; Cao, Y.; Liang, Y.; Osuna, S.; Houk, K. N.; Braunschweig, A. B. J. Am. Chem. Soc. 2013, 135, 9240.
[72] Kouznetsov, V. V. Tetrahedron 2009, 65, 2721.
[73] Gotoh, H.; Uchimaru, T.; Hayashi, Y. Chem. Eur. J. 2015, 21, 12337.
[74] Liu, J. H.; Lei, M.; Hu, L. H. Green Chem. 2012, 14, 2534.
[75] Jorner, K.; Emanuelsson, R.; Dahlstrand, C.; Tong, H.; Denisova, A. V.; Ottosson, H. Chem. Eur. J. 2014, 20, 9295.
[76] Sha, L.; Li, L.; Yuan, F. G. Chin. J. Chem. 2014, 32, 1214.
[77] Finke, A. D.; Diederich, F. Chem. Rec. 2015, 15, 19.
[78] Dahlstrand, C.; Rosenberg, M.; Kilså, K.; Ottosson, H. J. Phys. Chem. A 2012, 116, 5008.
[79] Alonso, M.; Herradón, B. Phys. Chem. Chem. Phys. 2010, 12, 1305.
[80] Müller, T. Angew. Chem., Int. Ed. 2002, 41, 2276.
[81] Xu, S. T.; Zheng, A.; Wei, Y. X.; Chen, J. R.; Li, J. Z.; Chu, Y. Y.; Zhang, M. Z.; Wang, Q. Y.; Zhou, Y.; Wang, J. B.; Deng, F.; Liu, Z. M. Angew. Chem., Int. Ed. 2013, 52, 11564.
[82] Nikolov, P.; Metzov, S. J. Photochem. Photobiol. A: Chem. 2000, 135, 13.
[83] Bello, A. M.; Kotra, L. P. Tetrahedron Lett. 2003, 44, 9271.
/
〈 |
|
〉 |