Chinese Journal of Organic Chemistry >
Synthesis of 1,2-Di(pyrimidin-2-yl)disulfides from the Oxidative Coupling and Aromatization of 3,4-Dihydropyrimidin-2-thiones by Using 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone as Oxidant
Received date: 2015-12-25
Revised date: 2016-01-21
Online published: 2016-02-18
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21362032, 21362031).
The oxidative coupling and aromatization of 3,4-dihydropyrimidin-2-thiones to produce 1,2-di(pyrimidin-2-yl)- disulfides by using 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) as oxidant at room temperature under an air atmosphere are reported. Compared with the reported procedures, this method has obvious advantages at mild reaction conditions including lower reaction temperature and shorter reaction time with higher yields of products.
Wang Gang, Guo Yan, Lü Ying, Wang Xicun, Quan Zhengjun . Synthesis of 1,2-Di(pyrimidin-2-yl)disulfides from the Oxidative Coupling and Aromatization of 3,4-Dihydropyrimidin-2-thiones by Using 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone as Oxidant[J]. Chinese Journal of Organic Chemistry, 2016 , 36(6) : 1375 -1381 . DOI: 10.6023/cjoc201512038
[1] (a) Arterburn, J. B.; Perry, M. C.; Nelson, S. L.; Dible, B. R.; Holguin, M. S. J. Am. Chem. Soc. 1997, 119, 9309.
(b) Yang, J.; Stuart, M. A. C.; Kamperman, M. Chem. Soc. Rev. 2014, 43, 8271.
(c) Saito, G.; Swanson, J. A.; Lee, K. D. Adv. Drug Delivery Rev. 2003, 55, 199.
[2] (a) Otto, S.; Furlan, R. L. E.; Sanders, J. K. M. Science 2002, 297, 590.
(b) Rowan, S. J.; Cantrill, S. J.; Cousins, G. R. L.; Sanders, J. K. M.; Stoddart, J. F. Angew. Chem. Int. Ed. 2002, 41, 898.
(c) Mandal, B.; Basu, B. RSC Adv. 2014, 4, 13854.
[3] (a) Sinha, P.; Kundu, A.; Roy, S.; Prabhakar, S.; Vairamani, M.; Sankar, A. R.; Kunwar, A. C. Organometallics 2001, 20, 157.
(b) Ranu, B. C.; Mandal, T. J. Org. Chem. 2004, 69, 5793.
(c) Baldovino-Pantaleón, O.; Hernández-Ortega, S.; Morales- Morales, D. Adv. Synth. Catal. 2006, 348, 236.
(d) Arisawa, M.; Suzuki, T.; Ishikawa, T.; Yamaguchi, M. J. Am. Chem. Soc. 2008, 130, 12214.
(e) Duan, Z.; Ranjit, S.; Zhang, P.; Liu, X. Chem. Eur. J. 2009, 15, 3666.
(f) Gogoi, P.; Gogoi, S. R.; Kalita, M.; Barman, P. Synlett 2013, 873.
(g) Cheng, J.-H.; Yi, C.-L.; Liu, T.-J.; Le, C.-F. Chem. Commun. 2012, 48, 8440.
(h) Prasad, C. D.; Balkrishna, S. J.; Kumar, A.; Bhakuni, B. S.; Shrimali, K.; Biswas, S.; Kumar, S. J. Org. Chem. 2013, 78, 1434.
(i) Ge, W.; Wei, Y. Green Chem. 2012, 14, 2066.
(j) Xu, X.-B.; Liu, J.; Zhang, J.-J.; Wang, Y.-W.; Peng, Y. Org. Lett. 2013, 15, 550.
[4] (a) Savarin, C.; Srogl, J.; Liebeskind, L. S. Org. Lett. 2002, 4, 4309.
(b) Taniguchi, N. J. Org. Chem. 2007, 72, 1241.
[5] (a) Kondo, T.; Uenoyama, S.-Y.; Fujita, K.-I.; Mitsudo, T.-A. J. Am. Chem. Soc. 1999, 121, 482.
(b) Singh, S.; Yadav, L. D. S. Org. Biomol. Chem. 2012, 10, 3932.
(c) Matsumoto, K.; Sanada, T.; Shimazaki, H.; Shimada, K.; Hagiwara, S.; Fujie, S.; Ashikari, Y.; Suga, S.; Kashimura, S.; Yoshida, J. Asian J. Org. Chem. 2013, 2, 325.
[6] (a) Arisawa, M.; Yamaguchi, M. Org. Lett. 2001, 3, 763.
(b) Arisawa, M.; Fujimoto, K.; Morinaka, S.; Yamaguchi, M. J. Am. Chem. Soc. 2005, 127, 12226.
(c) Du, H.-A.; Zhang, X.-G.; Tang, R.-Y.; Li, J.-H. J. Org. Chem. 2009, 74, 7844.
(d) Du, H.-A.; Tang, R.-Y.; Deng, C.-L.; Liu, Y.; Li, J.-H.; Zhang, X.-G. Adv. Synth. Catal. 2011, 353, 2739.
(e) Usugi, S.-I.; Yorimitsu, H.; Shinokubo, H.; Oshima, K. Org. Lett. 2004, 6, 601.
(f) Hu, B.-L.; Pi, S.-S.; Qian, P.-C.; Li, J.-H.; Zhang, X.-G. J. Org. Chem. 2013, 78, 1300.
(g) Gonçalves, L. C. C.; Victória, F. N.; Lima, D. B.; Borba, P. M. Y.; Perin, G.; Savegnago, L.; Lenardão, E. J. Tetrahedron Lett. 2014, 38, 5275.
[7] (a) Grayson, E. J.; Ward, S. J.; Hall, A. L.; Rendle, P. M.; Gamblin, D. P.; Batsanov, A. S.; Davis, B. G. J. Org. Chem. 2005, 70, 9740.
(b) Ajiki, K.; Hirano, M.; Tanaka, K. Org. Lett. 2005, 7, 4193.
(c) Hyvl, J.; Srogl, J. Eur. J. Org. Chem. 2010, 2849.
(d) Zhang, S.; Qian, P.; Zhang, M.; Hu, M.; Cheng, J. J. Org. Chem. 2010, 75, 6732.
(e) Zhu, N.; Zhang, F.; Liu, G. J. Comb. Chem. 2010, 12, 531.
(f) Mitamura, T.; Iwata, K.; Ogawa, A. J. Org. Chem. 2011, 76, 3880.
(g) Deng, H.; Li, Z.; Ke, F.; Zhou, X. Chem. Eur. J. 2012, 18, 4840.
(h) Kundu, D.; Ahammed, S.; Ranu, B. C. Green Chem. 2012, 14, 2024.
(i) Mukherjee, N.; Chatterjee, T.; Ranu, B. C. J. Org. Chem. 2013, 78, 11110.
[8] For selected examples, see: (a) Du, Y.; Yang, H.-C.; Xu, X.-L.; Wu, J.; Xu, Z.-K. ChemCatChem 2015, 7, 3822.
(b) Chauhan, D.; Kumar, P.; Joshi, C.; Labhsetwar, N.; Ganguly, S. K.; Jain, S. L. New J. Chem., 2015, 39, 6193.
(c) Bagi, N.; Kaizer, J.; Speier, G. O. RSC Adv. 2015, 5, 45983.
(d) Talla, A.; Driessen, B.; Straathof, N. J. W.; Milroy, L.-G.; Brunsveld, L.; Hessel, V.; Noël, T. Adv. Synth. Catal. 2015, 357, 2180.
[9] (a) Kappe, C. O. Tetrahedron 1993, 49, 6937.
(b) Kappe, C. O. Acc. Chem. Res. 2000, 33, 879.
(c) Wan, J.-P.; Liu, Y. Synthesis 2010, 3943.
(d) Quan, Z.-J.; Zhang, Z.; Da, Y.-X.; Wang, X.-C. Chin. J. Org. Chem. 2009, 29, 876 (in Chinese). (权正军, 张彰, 达玉霞, 王喜存, 有机化学, 2009, 29, 876.)
[10] (a) Quan, Z.-J.; Lv, Y.; Wang, Z.-J.; Zhang, Z.; Da, Y.-X.; Wang, X.-C. Tetrahedron Lett. 2013, 54, 1884.
(b) Quan, Z.-J.; Lv, Y.; Jing, F.-Q.; Jia, X.-D.; Wang, X.-C. Adv. Synth. Catal. 2014, 356, 325.
(c) Du, B.-X.; Quan, Z.-J.; Da, Y.-X.; Zhang, Z.; Wang, X.-C. Adv. Synth. Catal. 2015, 357, 1270.
(d) Guo, Y.; Quan, Z.-J.; Da, Y.-X.; Zhang, Z. Wang, X.-C. RSC Adv. 2015, 5, 45479.
[11] Hayashi, M.; Okunaga, K.-i.; Nishida, S.; Kawamura, K.; Eda, K. Tetrahedron Lett. 2010, 51, 6734.
[12] (a) Lo, W. S.; Hu, W. P.; Lo, H. P.; Chen, C. Y.; Kao, C. L.; Vandavasi, J. K.; Wang, J. J. Org. Lett. 2010, 12, 5570.
(b) Vandavasi, J. K.; Hub, W.-P.; Chen, C.-Y.; Wang, J.-J. Tetrahedron 2011, 67, 8895.
[13] Liebeskind, L. S.; Srogl, J. J. Am. Chem. Soc. 2000, 122, 11260.
[14] Wang, X. C.; Quan, Z. J.; Wang, F.; Wang, M. G.; Zhang, Z.; Li, Z. Synth. Commun. 2006, 36, 451.
/
〈 |
|
〉 |