Chinese Journal of Organic Chemistry >
Synthesis and Properties of Alkoxy-Bridged Triphenylene and Perylene Monoimide Diesters Dyads
Received date: 2015-12-30
Revised date: 2016-01-22
Online published: 2016-02-24
Supported by
Project supported by the National Natural Science Fondation of China (Nos. 11364013, 21266006), the Education Department of Guangxi Province (No. KY2015YB129) and the Startup Foundation for Doctor of Guilin University of Technology.
Columnar discotic liquid crystals have high charge carrier mobility, and donor-bridge-accepter-based supra-mole- cular compounds have photoinduced intramolecular electron transfer behavior. In order to make the organic materials possess these two performances, dyads composed of hexaalkoxy triphenylene unit and perylene monoimide diesters unit were prepared in this work. In the dyads, the flexible alkoxys were used as bridges, the triphenylene units having six electron-donating alkoxy tails acted as electron donors, and the perylene monoimide diesters units having four electron-withdrawing carbonyls acted as electron acceptors. Their structures were established by proton nuclear magnetic resonance (1H NMR), infrared spectroscopy (IR), mass spectrometry (MS) and elemental analysis (EA). The photophysical properties were characterized by means of UV-Vis absorption spectroscopy and fluorescence spectroscopy. The results showed that in dilute dichloromethane solutions the absorbance strength of these dyads was the sum of that of their monomers, hexakishexyloxy triphenylene (HAT6) and N-hexyl-perylene monoimide dihexyl esters (PMD6), and not interfered by the length of flexible bridges. When excited at 475 nm, the strength of the fluorescence of the dyads decreased when the spacers shortened from dodecyloxy, decyloxy, hexyloxy to ethoxy groups. Actually, when the spacer was ethoxy group, the fluorescence of the dyad was almost quenched completely. This is attributed to the photoinduced electron transfer properties (PET) between the donor and acceptor units. When excited at 280 nm, the strength of the fluorescence of the triphenylene units also became weaker when the spacers shortened from dodecyloxy to ethanyloxy. At the same time, the strength of the fluorescence of the perylene units became stronger. This is attributed to energy transfer from the triphenylene unit to the perylene unit. In addition, their liquid crystalline properties have been studied by polarized optical microscopy (POM) and differential scanning calorimetry (DSC). The results demonstrated that when the spacers were decyloxy and dodecyloxy the dyads possessed columnar liquid crystal behavior in the heating circle, while in the cooling circle only the dyad bearing the dodecyloxy spacer showed mesophase; and dyads bridged by the hexyloxy or ethanyloxy did not show liquid crystal properties in the heating or cooling circle. Electronic energy levels of triphenylene and perylene units of the dyads measured by cyclic voltammetry (CV) are almost the same as that of HAT6 and PMD6, respectively. In conclusion, these dyads have the potential application in the organic photovoltaic field.
Kong Xiangfei , Liu Peng , Wang Guixia , Xia Liting , Dai Shengping , Su Jian , Liao Peihai , Liu Zheng , Mu Linping . Synthesis and Properties of Alkoxy-Bridged Triphenylene and Perylene Monoimide Diesters Dyads[J]. Chinese Journal of Organic Chemistry, 2016 , 36(6) : 1325 -1334 . DOI: 10.6023/cjoc201512048
[1] Chandrasekhar, S.; Sadashiva, B. K.; Suresh, K. A. Pramana 1977, 9, 471.
[2] Bushby, R. J.; Lozman, O. R. Curr. Opin. Colloid Interface Sci. 2002, 7, 343.
[3] Kumar, S. Liq. Cryst. 2004, 31, 1037.
[4] Kumar, S. Liq. Cryst. 2013, 40, 1769.
[5] Tschierske, C. Angew. Chem., Int. Ed. 2013, 52, 8828.
[6] Laschat, S.; Baro, A.; Steinke, N.; Giesselmann, F.; Hagele, C.; Scalia, G.; Judele, R.; Kapatsina, E.; Sauer, S.; Schreivogel, A.; Tosoni, M. Angew. Chem., Int. Ed. 2007, 46, 4832.
[7] Bushby, R. J.; Lozman, O. R. Curr. Opin. Solid State Mater. Sci. 2002, 6, 569.
[8] Haverkate, L. A.; Zbiri, M.; Johnson, M. R.; Deme, B. J. Phys Chem. B. 2011, 115, 13809.
[9] Craats, A. M.; Warman, J. M.; Fechtenk, A.; Brand, J. D.; Harbison, M. A.; Mullen, K. Adv. Mater 1999, 11, 1469.
[10] Seguy, I.; Destruel, P.; Bock, H. Synth. Met. 2000, 111~112, 15.
[11] Schmidt-Mende, L.; Fechtenkotter, A.; Mullen, K.; Moons, E.; Friend, R. H.; MacKenzie, J. D. Science 2001, 293, 1119.
[12] Pisula, W.; Menon, A.; Stepputat, M.; Lieberwirth, I.; Kolb, U.; Tracz, A.; Sirringhaus, H.; Pakula, T.; Mullen, K. Adv. Mater. 2005, 17, 684.
[13] Cammidge, A. N.; Bushby, R. J. Handbook of Liquid Crystals, Vol. 2B, Eds.: Demus, D.; Goodby, J. W.; Gray, G. W.; Spiess, H.-W.; Vill, V., Wiley-VCH, Weinheim, 1998, pp. 693~833.
[14] Mao, H.; He, Z.; Zhang, C. Chin. J. Org. Chem. 2006, 26, 413 (in Chinese). (毛华香, 何志群, 张春秀, 有机化学, 2006, 26, 413.)
[15] Li, J.; He, Z.; Xu, M.; Kong, X.; Zhang, C. Chin. J. Org. Chem. 2010, 30, 590 (in Chinese). (李娟娟, 何志群, 许敏, 孔翔飞, 张春秀, 有机化学, 2010, 30, 590.)
[16] Ma, X.; Li, Y.; Qiu, X.; Zhao, K.; Yang, Y.; Wang, C. J. Mater. Chem. 2009, 19, 1490.
[17] Zhu, Y.; Tian, H.; Wu, H.; Hao, D.; Zhou, Y.; Shen, Z.; Zou, D.; Sun, P.; Fan, X.; Zhou, Q. J. Polym. Sci. Part A: Polym. Chem. 2014, 52, 295.
[18] Chen, H.; Zhao, K.; Wang, L.; Hu, P.; Wang, B. Soft Mater. 2011, 9, 359.
[19] Han, B.; Hu, P.; Wang, B.; Redshaw, C.; Zhao, K. Beilstein J. Org. Chem. 2013, 9, 2852.
[20] Yang, F.; Zhang, Y.; Guo, H.; Lin, J. Tetrahedron Lett. 2013, 54, 4953.
[21] Zhao, K.; An, L.; Zhang, X.; Yu, W.; Hu, P.; Wang, B.; Xu, J.; Zeng, Q.; Monobe, H.; Shimizu, Y.; Heinrich, B.; Donnio, B. Chem. Eur. J. 2015, 21, 10379
[22] Wang, Y.; Zhang, C.; Wu, H.; Pu, J. J. Mater. Chem. C, 2014, 2, 1667.
[23] Zhao, K.; Zhou, H.; Yu, W.; Wang, B.; Hu, P. Acta Chim. Sinica 2011, 69, 1895 (in Chinese). (赵可清, 周慧, 余文浩, 汪必琴, 胡平, 化学学报, 2011, 69, 1895.)
[24] Boden, N.; Bushby, R. J.; Cammidge, A. N.; El-Mansoury, A.; Philip, S.; Martin, P. S.; Lu, Z. J. Mater. Chem. 1999, 9, 1391.
[25] Kumar, S. Liq. Cryst. 2005, 32, 1089.
[26] Wu, S. Introduction to Supramolecular Chemistry——Basic and Application, Science Press, Beijing, 2007, pp. 2~8 (in Chinese). (吴世康, 超分子光化学导论——基础与应用, 科学出版社, 北京, 2007, pp. 2~8.)
[27] Hassheider, T.; Benning, S. A.; Kitzerow, H.; Achard, M.; Bock. H. Angew. Chem., Int. Ed. 2001, 40, 2060.
[28] Wicklein, A.; Lang, A.; Much, M.; Thelakkat, M. J. Am. Chem. Soc. 2009, 131, 14442.
[29] Langhals, H. Helv. Chim. Acta 2005, 88, 1309.
[30] Wang, H.; Jeyakkumar, P.; Nagarajan, S.; Meng, J.; Zhou, C. Prog. Chem. 2015, 27, 704 (in Chinese). (王辉, Jeyakkumar, P.; Nagarajan, S.; 孟江平, 周成合, 化学进展, 2015, 27, 704.)
[31] Gupta, S. K.; Setia, S.; Sidiq, S.; Gupta, M.; Kumar, S.; Pal, S. K. RSC Adv. 2013, 3, 12060.
[32] Li, Z. Ph.D. Dissertation, Jilin University, Changchun, 2011 (in Chinese). (李在房, 博士论文, 吉林大学, 长春, 2011.)
[33] Lu, Z.; Zhang, X.; Zhan, C.; Jiang, B.; Zhang, X.; Chen, L.; Yao, J.; Phys. Chem. Chem. Phys. 2013, 15, 11375.
[34] Adam, D.; Closs, F.; Frey, T.; Funhoff, D.; Haarer, D.; Ringsdorf, H.; Schuhmacher, P.; Siemesmeyer, K. Phys. Rev. Lett. 1993, 70, 457.
[35] Zhao, B.; Peng, R.; Zhang, K.; Lin, K. A.; Luo, J.; Shao, J.; Ho, P., K. H.; Wu, J. Chem. Mater. 2010, 22, 435.
[36] Yang, L.; Shi, M.; Wang, M.; Chen, H. Tetrahedron 2008, 64, 5404.
[37] Wang, H.; Jeyakkumar, P.; Nagarajan, S.; Meng, J.; Zhou, C. Prog. Chem. 2015, 27, 704 (in Chinese). (王辉, Jeyakkumar, P.; Nagarajan, S.; 孟江平, 周成合, 化学进展, 2015, 27, 704.)
[38] Subban, P. Photochemical Principle, Translated by Lu, Z., People Education Press, Beijing, 1983, pp. 12~15 (in Chinese). (苏班, P., 光化学原理, 陆志刚译, 人民教育出版社, 北京, 1983, pp. 12~15.)
[39] Fan, M.; Yao, J.; Tong, Z. Molecular Photochemical and Optical Functional Materials Science, Science Press, Beijing, 2009, p. 18 (in Chinese). (樊美公, 姚建年, 佟振合, 分子光化学与光功能材料科学, 科学出版社, 北京, 2009, p. 18.)
[40] Fan, M.; Yao, J.; Tong, Z. Molecular Photochemical and Optical Functional Materials Science, Science Press, Beijing, 2009, pp. 84~86 (in Chinese). (樊美公, 姚建年, 佟振合, 分子光化学与光功能材料科学, 科学出版社, 北京, 2009, pp. 84~86.)
[41] Wu, S. Introduction to Supramolecular Chemistry——Basic and Application, Science Press, Beijing, 2007, pp. 37~39 (in Chinese). (吴世康, 超分子光化学导论——基础与应用, 科学出版社, 北京, 2007, pp. 37~39.)
[42] Kong, X.; He, Z.; Gopee, H.; Jing, X.; Cammidge, A. N. Tetrahedron Lett. 2011, 52, 77.
[43] Zhao, K.; Yang, G.; Yu, W.; Wang, B,; Hu, P. Chin. J. Org. Chem. 2009, 29, 2017 (in Chinese). (赵可清, 杨高帆, 余文浩, 汪必琴, 胡平, 有机化学, 2009, 29, 2017.)
[44] Kong, X.; He, Z.; Zhang, Y.; Mu, L.; Liang, C.; Chen, B.; Jing, X.; Cammidge. A. N. Org. Lett. 2011, 13, 764.
[45] Kong, X. Ph.D. Dissertation, Beijing Jiaotong University, Beijing, 2011 (in Chinese). (孔翔飞, 博士论文, 北京交通大学, 北京, 2011.)
[46] Mo, X.; Shi, M.; Huang, J.; Wang, M.; Chen, H. Dyes Pigm. 2008, 76, 236.
[47] Wang, R.; Shi, Z, Zhang, C.; Zhang, A.; Chen, J.; Guo W.; Sun, Z. Dyes Pigm. 2013, 98, 450.
/
〈 |
|
〉 |