Notes

Discovery of a New Pyrazinone Natural Product by Genome Mining

  • Kang Wen-Jia ,
  • Wu Sheng ,
  • Hua Huiming ,
  • Pan Hai-Xue ,
  • Tang Gong-Li
Expand
  • a. Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016;
    b. Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032

Received date: 2016-02-18

  Revised date: 2016-03-01

  Online published: 2016-03-18

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 81373307 & 81473124).

Abstract

The genomic sequences of Streptomyces sp. TP-A0365 were scanned using a secondary metabolite genome mining approach. A new nonribosomal peptide synthetase (NRPS) gene responsible for the biosynthesis of an unknown pyrazinone compound was found. The biosynthetic pathway of related compound was disrupted by inactivating the NRPS gene. Comparing the fermentation products of the mutant strain and the original strain (TG1301 derived from Streptomyces sp. TP-A0365), we caught compound 1 which disappeared in the mutant strain. Compound 1 was isolated from 20 L fermentation cultures of the original strain and its structure was established as 3-isopropyl-7,8-dihydropyrrolo[1,2-a]pyrazin-4(6H)-one, a new pyrazinone compound designated as provalin

Cite this article

Kang Wen-Jia , Wu Sheng , Hua Huiming , Pan Hai-Xue , Tang Gong-Li . Discovery of a New Pyrazinone Natural Product by Genome Mining[J]. Chinese Journal of Organic Chemistry, 2016 , 36(7) : 1696 -1699 . DOI: 10.6023/cjoc201602016

References

[1] Wyatt, M. A.; Wang, W.; Roux, C. M.; Beasley, F. C.; Heinrichs, D. E.; Dunman, P. M.; Magarvey, N. A. Science 2010, 329, 294.
[2] Zimmermann, M.; Fischbach, M. A. Chem. Biol. 2010, 17, 925.
[3] Alvarez, M. E.; White, C. B.; Gregory, J.; Kydd, G. C.; Harris, A.; Sun, H. H.; Gillum, A. M.; Cooper, R. J. Antibiot. 1995, 48, 1165.
[4] Tatsuta, K.; Fujimoto, K.; Yamashita, M.; Tsuchiya, T.; Umezawa, S. J. Antibiot. 1973, 26, 606.
[5] Tang, Y.-Q.; Sattler, I.; Thiericke, R.; Grabley, S.; Feng, X.-Z. Eur. J. Org. Chem. 2000, 2, 261.
[6] Motohashi, K.; Inaba, K.; Fuse, S.; Doi, T.; Izumikawa, M.; Khan, S. T.; Takagi, M.; Takahashi, T.; Shinya, K. J. Nat. Prod. 2011, 74, 1630.
[7] Jansen, R.; Sood, S.; Mohr, K. I.; Kunze, B.; Irschik, H.; Stadler, M.; Müller, R. J. Nat. Prod. 2014, 77, 2545.
[8] Kyeremeh, K.; Acquah, K. S.; Camas, M.; Tabudravu, J.; Houssen, W.; Deng, H.; Jaspars, M. Mar. Drugs 2014, 12, 5197.
[9] Bian, X.; Shao, M.; Pan, H.; Wang, K.; Huang, S.; Wu, X.; Xue, C.; Hua, H.; Pei, Y.; Bai, J. Nat. Prod. Res. 2016, 30, 125.
[10] Secor, P. R.; Jennings, L. K.; James, G. A.; Kirker, K. R.; Pulcini, E. D.; McInnerney, K.; Gerlach, R.; Livinghouse, T.; Hilmer, J. K.; Bothner, B.; Fleckman, P.; Olerud, J. E.; Stewart, P. S. PLoS One 2012, 7, e40973.
[11] Taggi, A. E.; Stevenson, T. M.; Bereznak, J. F.; Sharpe, P. L.; Gutteridge, S.; Forman, R.; Bisaha, J. J.; Cordova, D.; Crompton, M.; Geist, L.; Kovacs, P.; Marshall, E.; Sheth, R.; Stavis, C.; Tseng, C. P. Bioorg. Med. Chem. 2016, 24, 435.
[12] Gising, J.; Belfrage, A. K.; Alogheli, H.; Ehrenberg, A.; Åkerblom, E.; Svensson, R.; Artursson, P.; Karlén, A.; Danielson, U. H.; Larhed, M.; Sandström, A. J. Med. Chem. 2014, 57, 1790.
[13] Zhang, X.; Glunz, P. W.; Jiang, W.; Schmitt, A.; Newman, M.; Barbera, F. A.; Bozarth, J. M.; Rendina, A. R.; Wei, A.; Wen, X.; Rossi, K. A.; Luettgen, J. M.; Wong, P. C.; Knabb, R. M.; Wexler, R. R.; Scott Priestley, E. Bioorg. Med. Chem. Lett. 2013, 23, 1604.
[14] Wyatt, M. A.; Mok, M. C.; Junop, M.; Magarvey, N. A. Chembiochem 2012, 13, 2408.
[15] Huang, W.; Xu, H.; Li, Y.; Zhang, F.; Chen, X.-Y.; He, Q.-L.; Igarashi, Y.; Tang, G.-L. J. Am. Chem. Soc. 2012, 134, 8831.

Outlines

/