ARTICLE

Design, Synthesis and Biological Evaluation of Small-Molecule Inhibitors of Signal Transducer and Activator of Transcription#br# 3 (STAT3) Signaling Pathway

  • Gao Dingding ,
  • Bao Keting ,
  • Zhang Mingming ,
  • Li Yingxia
Expand
  • Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203

Received date: 2016-02-27

  Revised date: 2016-03-27

  Online published: 2016-04-26

Supported by

Project supported by the National Natural Science Foundation of China (No. 81473075).

Abstract

Constitutive activation of signal transducer and activator of transcription 3 (STAT3) is involved in the occurrence and development of the tumors, and is regarded as an attractive therapeutic target for cancer therapy. Our laboratory discovered some STAT3 inhibitors containing benzothiazole scaffold through virtual screening before. In a continuing effort to develop more potential STAT3 inhibitors, twenty-one target compounds based on our identified hit compound (16v) were rational designed and synthesized. These structures were characterized by 1H NMR, 13C NMR and HRMS. All the target compounds were tested for their inhibitory activity using a STAT3 luciferase reporter system. The results showed that many compounds displayed better activity than lead compound 16v in series I. However, compounds containing thiazolo[5,4-d]pyrimidine scaffold led to the loss of inhibitory activity. This may attributed to the losing of hydrogen bonding to Glu638.

Cite this article

Gao Dingding , Bao Keting , Zhang Mingming , Li Yingxia . Design, Synthesis and Biological Evaluation of Small-Molecule Inhibitors of Signal Transducer and Activator of Transcription#br# 3 (STAT3) Signaling Pathway[J]. Chinese Journal of Organic Chemistry, 2016 , 36(8) : 1854 -1862 . DOI: 10.6023/cjoc201602030

References

[1] Darnell, J. E. Jr. Science 1997, 277, 1630.
[2] Bromberg, J.; Darnell, J. E. Jr. Oncogene 2000, 19, 2468.
[3] Yu, H.; Pardoll, D.; Jove, R. Nat. Rev. Cancer 2009, 9, 798.
[4] Ihle, J. N. Curr. Opin. Cell. Biol. 2001, 13, 211.
[5] Darnell, J. E., Jr. Nat. Rev. Cancer 2002, 2, 740.
[6] Yu, H.; Jove, R. Nat. Rev. Cancer 2004, 4, 97.
[7] Gabriella, M.; Tyvette, S. H.; James, T. Nat. Rev. Drug Discovery 2013, 12, 611.
[8] Turkson, J. Expert. Opin. Ther. Targets 2004, 8, 409.
[9] Miklossy, G.; Hilliard, T. S.; Turkson, J. Nat. Rev. Drug Discovery 2013, 12, 611.
[10] Banerjee, K.; Resat, H. Int. J. Cancer 2016, 138, 2570.
[11] Tell, R. W.; Horvath, C. M. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 12787.
[12] Priceman, S. J. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 13079.
[13] Aggarwal, B. B.; Kunnumakkara, A. B.; Harikumar, K. B.; Gupta, S. R.; Tharakan, S. T.; Koca, C.; Dey, S.; Sung, B. Ann. N. Y. Acad. Sci. 2009, 1171, 59.
[14] Darnell, J. E. Nat. Med. 2005, 11, 595.
[15] Masciocchi, D.; Gelain, A.; Meneghetti, F.; Barlocco, D. Future Med. Chem. 2011, 3, 567;
[16] Haftchenary, S.; Avadisian, M.; Gunning, P. T. Anticancer Drugs 2011, 22, 115.
[17] Becker, S.; Groner, B.; Muller, C. W. Nature 1998, 394, 145.
[18] Turkson, J.; Ryan, D.; Kim, J. S.; Zhang, Y.; Chen, Z. Laudano, A.; Jove, R. J. Biol. Chem. 2001, 276, 45443.
[19] Lin, L.; Hutzen, B.; Li, P. K.; Ball, S.; Zuo, M.; DeAngelis, S.; Foust, E.; Sobo, M.; Friedman, L.; Bhasin, D.; Cen, L.; Li, C.; Lin, J. A. Neoplasia 2010, 12, 39.
[20] Zhang, X.; Sun, Y.; Pireddu, R.; Yang, H.; Urlam, M. K.; Lawrence, H. R.; Guida, W. C.; Lawrence, N. J.; Sebti, S. Cancer Res. 2013, 73, 1922.
[21] Ji, P.; Xu, X.; Ma, S.; Fan, J.; Zhou, Q.; Mao, X.; Qiao, C. ACS Med. Chem. Lett. 2015, 6, 1010.
[22] Lai, M. J.; Lee, H. Y.; Chuang, H. Y.; Chang, L. H.; Tsai, A. C.; Chen, M. C.; Huang, H. L.; Wu, Y. W.; Teng, C. M.; Pan, S. L.; Liu, Y. M.; Mehndiratta, S.; Liou, J. P. J. Med. Chem. 2015, 58, 6549.
[23] Zhang, M.; Zhu, W.; Li, Y. Eur. J. Med. Chem. 2013, 62, 301.
[24] Wang, Z.; Shi, X.; Wang, J. Bioorg. Med. Chem. Lett. 2011, 21, 1097.
[25] Takio, N.; Shoji, I. Pharm. Soc. Jpn. 1968, 16, 745.

Outlines

/