Notes

Synthesis of Post-translational Modifier Protein NEDD8 via Ligation of Peptide Hydrazides

  • Guan Chaojian ,
  • Wang Tao ,
  • Wang Jun ,
  • Li Yiming
Expand
  • Department of Pharmacy, School of Biological and Medical Engineering, Hefei University of Technology, Hefei 230009

Received date: 2016-05-10

  Revised date: 2016-06-08

  Online published: 2016-07-07

Supported by

Project supported by the National Natural Science Foundation of China (Nos.21372058,21572043).

Abstract

As an important ubiquitin-like modifier protein in eukaryotic organisms, NEDD8 (neural precursor cell expressed developmentally down-regulated 8) is involved in regulating a series of important life processes in cells. Nowadays, the major method for obtaining NEDD8 is recombinant protein expression. However, the yield is relatively low and the recombined tag for purification needs to be removed in an extra step. In present work, NEDD8 protein was first synthesized in homogeneity by using high temperature assisted solid-phase peptide synthesis (SPPS) combining with the one-pot ligation-desulfurization strategy. This method lays the foundation for the study of NEDD8 modified proteins in future.

Cite this article

Guan Chaojian , Wang Tao , Wang Jun , Li Yiming . Synthesis of Post-translational Modifier Protein NEDD8 via Ligation of Peptide Hydrazides[J]. Chinese Journal of Organic Chemistry, 2016 , 36(11) : 2763 -2768 . DOI: 10.6023/cjoc201605013

References

[1] (a) Pickart, C. M.; Eddins, M. J. Biochim. Biophys. Acta 2004, 1695, 55.
(b) Pickart, C. M.; Fushman, D. Curr. Opin. Chem. Biol. 2004, 8, 610.
[2] (a) Matunis, M. J.; Coutavas, E.; Blobel, G. J. Cell Biol. 1997, 135, 1457.
(b) Kumar, S.; Yoshida, Y.; Noda, M. Biochem. Biophys. Res. Commun. 1993, 195, 393.
[3] (a) Hochstrasser, M. Cell 2006, 124, 27.
(b) Pickart, C. M. Cell 2004, 116, 181.
[4] Pan, Z. Q.; Kentsis, A.; Dias, D. C.; Yamoah, K.; Wu, K. Oncogene 2004, 23, 1985.
[5] (a) Duda, D. M.; Borg, L. A.; Scott, D. C.; Hunt, H. W.; Hammel, M.; Schulman, B. A. Cell 2008, 134, 995.
(b) Scott, D. C.; Sviderskiy, V. O.; Monda, J. K.; Lydeard, J. R.; Cho, S. E.; Harper, J. W.; Schulman, B. A. Cell 2014, 157, 1671.
(c) Cavadini, S.; Fischer, E. S.; Bunke, R. D.; Potenza, A.; Lingaraju, G. M.; Goldie, K. N.; Mohamed, W. I.; Faty, M.; Petzold, G.; Beckwith, R. E. J.; Tichkule, R. B.; Hassiepen, U.; Abdulrahman, W.; Pantelic, R. S.; Matsumoto, S.; Sugasawa, K.; Stahlberg, H.; Thomä, N. H. Nature 2016, 531, 598.
[6] Singh, R. K.; Zerath, S.; Kleifeld, O.; Scheffner, M.; Glickman, M. H.; Fushman, D. Mol. Cell. Proteomics 2012, 11, 1595.
[7] (a) Stickle, N. H.; Chung, J.; Klco, J. M.; Hill, R. P.; Kaelin, W. G. Jr.; Ohh, M. Mol. Cell. Biol. 2004, 24, 3251.
(b) Harper, J. Cell 2004, 118, 2.
(c) Xirodimas, D. P.; Saville, M. K.; Bourdon, J. C.; Hay, R. T.; Lane, D. P. Cell 2004, 118, 83.
(d) Xirodimas, D. P.; Sundqvist, A.; Nakamura, A.; Shen, L.; Botting, C.; Hay, R. T. EMBO Rep. 2008, 9, 280.
(e) Broemer, M.; Tenev, T.; Rigbolt, K. T. G.; Hempel, S.; Blagoev, B.; Silke, J.; Ditzel, M.; Meier, P. Mol. Cell 2010, 40, 810.
(f) Benjamin, S.; Steller, H. Dev. Cell 2010, 19, 791.
[8] (a) Xirodimas, D. P.; Sundqvist, A.; Nakamura, A.; Shen, L.; Botting, C.; Hay, R. T. EMBO Rep. 2008, 9, 280.
(b) Jones, J.; Wu, K.; Yang, Y. Y.; Guerrero, C.; Nillegoda, N.; Pan, Z. Q.; Lan, H. J. Proteome Res. 2008, 7, 1274.
[9] Jbara, M.; Maity, S. K.; Seenaiah, M.; Brik, A. J. Am. Chem. Soc. 2016, 138, 5069.
[10] (a) Kent, S. B. H. Chem. Soc. Rev. 2009, 38, 338.
(b) Raibaut, L.; Ollivier, N.; Melnyk, O. Chem. Soc. Rev. 2012, 41, 7001.
(c) Huang, Y. C.; Liu, L. Sci. China Chem. 2015, 58, 1779.
(d) Huang, Y. C.; Fang, G. M.; Liu, L. Natl. Sci. Rev. 2016, 3, 107.
(e) Liu, H.; Li, X. C. Org. Biomol. Chem. 2014, 12, 3768.
[11] (a) Fang, G. M.; Li, Y. M.; Huang, Y. C.; Li, J. B.; Cui, H. K.; Liu, L. Angew. Chem., Int. Ed. 2011, 50, 7645.
(b) Fang, G.-M.; Wang, J.-X.; Liu, L. Angew. Chem., Int. Ed. 2012, 51, 10347.
(c) Tang, S.; Si, Y. Y.; Wang, Z. P.; Mei, K. R.; Chen, X.; Cheng, J. Y.; Zheng, J.-S.; Liu, L. Angew. Chem., Int. Ed. 2015, 54, 5713.
(d) Wang, J. X.; Fang, G. M.; He, Y.; Qu, D. L.; Yu, M.; Hong, Z. Y.; Liu, L. Angew. Chem., Int. Ed. 2015, 54, 2194.
(e) Zheng, J. S.; Yu, M.; Qi, Y. K.; Tang, S.; Shen, F.; Wang, Z. P.; Xiao, L.; Zhang, L.; Tian, C. L.; Liu, L. J. Am. Chem. Soc. 2014, 136, 3695.
(f) Zheng, J.-S.; He, Y.; Zuo, C.; Cai, X.-Y.; Tang, S.; Wang, Z. A.; Zhang, L.-H.; Tian, C.-L.; Liu, L. J. Am. Chem. Soc. 2016, 138, 3553.
[12] Huang, Y. C.; Guan, C. J.; Tan, X. L.; Chen, C. C.; Guo, Q. X.; Li, Y. M. Org. Biomol. Chem. 2015, 13, 1500.
[13] Huang, Y. C.; Chen, C. C.; Gao, S.; Wang, Y. H.; Xiao, H.; Wang, F.; Tian, C. L.; Li, Y. M. Chem. Eur. J. 2016, 22, 7623.
[14] Kochendoerfer, G. G.; Kent, S. B. H. Curr. Opin. Chem. Biol. 1999, 3, 665.
[15] (a) Miller, M.; Schneider, J.; Sathyanarayana, B. K.; Toth, M. V.; Marshall, G. R.; Clawson, L.; Selk, L.; Kent, S. B. H.; Wlodawer, A. Science 1989, 246, 1149.
(b) Deng, F. K.; Zhang, L.; Wang, Y. T.; Schneewind, O.; Kent, S. B. H. Angew. Chem., Int. Ed. 2014, 53, 4662.
[16] (a) Zheng, J. S.; Tang, S.; Huang, Y. C.; Liu, L. Acc. Chem. Res. 2013, 46, 2475.
(b) Zheng, J. S.; Tang, S.; Qi, Y. K.; Wang, Z. P.; Liu, L. Nat. Protoc. 2013, 8, 2483.
(c) Li, J. B.; Li, Y. Y.; He, Q. Q.; Li, Y. M.; Li, H. T.; Liu, L. Org. Biomol. Chem. 2014, 12, 5435.
(d) Chen, C. C.; Li, S. J.; Chen, Y. Q.; Xu, H. J.; Li, Y. M. Chin. J. Org. Chem. 2014, 34, 1452.
(e) Li, Y. M.; Li, Y. T.; Pan, M.; Kong, X. Q.; Huang, Y. C.; Hong, Z. Y.; Liu, L. Angew. Chem., Int. Ed. 2014, 53, 2198.

Outlines

/