REVIEW

Application of Transition Metal Hydrides in the Activation and Functionalization of CO2

  • Zhang Hua ,
  • Sun Hongjian ,
  • Li Xiaoyan
Expand
  • School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Jinan 250199

Received date: 2016-05-20

  Revised date: 2016-07-19

  Online published: 2016-08-12

Supported by

Project supported by the National Natural Science Foundation of China (No. 21372143).

Abstract

The application of transition metal hydrides, such as hydrides of Fe, Ru, Ir and Ni, in the activation, hydrogenation, hydroboration and hydrosilation of CO2 is reported. And the mechanism and the reaction conditions of hydrogenation, hydrob-oration and hydrosilation of CO2 are described especially.

Cite this article

Zhang Hua , Sun Hongjian , Li Xiaoyan . Application of Transition Metal Hydrides in the Activation and Functionalization of CO2[J]. Chinese Journal of Organic Chemistry, 2016 , 36(12) : 2843 -2857 . DOI: 10.6023/cjoc201605037

References

[1] Ginsberg, A. Transition Metal Chem. 1965, 1, 111.
[2] Li, F. W.; Suo, Q. L.; Hong, H. L.; Zhu, N.; Wang, Y. Q.; Han, L. M. Chin. J. Org. Chem. 2014, 34, 2172(in Chinese).(李发旺, 索全伶, 洪海龙, 竺宁, 王亚琪, 韩利民, 有机化学, 2014, 34, 2172.)
[3] Li, X. D.; L, X. D.; Song, Q. W.; Guo, Y. K.; He, L. N. Chin. J. Org. Chem. 2016, 36, 744(in Chinese).(李雪冬, 郎咸东, 宋清文, 郭亚坤, 何良年, 有机化学, 2016, 36, 744.)
[4] Matsuo, T.; Kawaguchi, H. J. Am. Chem. Soc. 2006, 128, 12362.
[5] Chakraborty, S.; Zhang, J.; Krause, J. A.; Guan, H. J. Am. Chem. Soc. 2010, 132, 8872.
[6] Bontemps, S.; Vendier, L.; Sabo-Etienne, S. J. Am. Chem. Soc. 2014, 136, 4419.
[7] Zhang, S.; Li, X. D.; He, L. N. Acta Chim. Sinica 2016, 74, 17(in Chinese).(张帅, 李雪冬, 何良年, 化学学报, 2016, 74, 17.)
[8] Zhang, Y. N.; Li, J. L.; Huang, X. R. Chem. J. Chin. Univ. 2016, 37, 534(in Chinese).(张英男, 李吉来, 黄旭日, 高等学校化学学报, 2016, 37, 534.)
[9] Davies, C. J. E.; Lowe, J. P.; Mahon, M. F.; Poulten, R. C.; Whittlesey, M. K. Organometallics 2013, 32, 4927.
[10] Kang, P.; Cheng, C.; Chen, Z.; Schauer, C. K.; Meyer, T. J.; Brookhart, M. J. Am. Chem. Soc. 2012, 134, 5500.
[11] Dobereiner, G. E.; Wu, J.; Manas, M. G.; Schley, N. D.; Takase, M. K.; Crabtree, R. H.; Hazari, N.; Maseras, F.; Nova, A. Inorg. Chem. 2012, 51, 9683.
[12] Laird, M. F.; Pink, M.; Tsvetkov, N. P.; Fan, H.; Gaulton, K. G. Dalton Trans. 2009, 1283.
[13] Chakraborty, S.; Zhang, J.; Krause, J. A.; Guan, H. J. Am. Chem. Soc. 2010, 132, 8872.
[14] Johansson, R.; F. Wendt, O. Organometallics 2007, 26, 2426.
[15] Tang, S. Y.; Rijs, N. J.; Li, J.; Schlangen, M.; Schwarz, H. Chem.-Eur. J. 2015, 21, 8483.
[16] Rankin, M. A.; Cummins, C. C. J. Am. Chem. Soc. 2010, 132, 10021.
[17] Langer, R.; Diskin-Posner, Y.; Leitus, G.; Shimon, L. J. W.; Ben-David, Y.; Milstein, D. Angew. Chem., Int. Ed. 2011, 50, 9948.
[18] Hou, C.; Jiang, J. X.; Zhang, S. D.; Wang, G.; Zhang, Z. H.; Ke, Z. F.; Zhao, C. Y. ACS Catal. 2014, 4, 2990.
[19] Zhang, Y.; MacIntosh, A. D.; Wong, J. L.; Bielinski, E. A.; Williard, P. G.; Bernskoetter, W. H.; Mercado, B. Q.; Hazari, N. Chem. Sci. 2015, 6, 4291.
[20] Chakraborty, S.; Blacque, O.; Berke, H. Dalton Trans. 2015, 6560.
[21] Gilbertson, J. D.; Szymczak, N. K.; Tyler, D. R. Inorg. Chem. 2004, 43, 3341.
[22] Gilbertson, J. D.; Szymczak, N. K.; Crossland, J. L.; Miller, W. K.; Lyon, D. K.; Foxman, B. M.; Davis, J.; Tyler, D. R. Inorg. Chem. 2007, 46, 1205.
[23] Lee, Y.; Kinney, R. A.; Hoffman, B. M.; Peters, J. C. J. Am. Chem. Soc. 2011, 133, 16366.
[24] Rivada-Wheelaghan, O.; Dauth, A.; Leitus, G.; Diskin-Posner, Y.; Milstein, D. Inorg. Chem. 2015, 54, 4526.
[25] Huff, C. A.; Sanford, M. S. ACS Catal. 2013, 2412.
[26] Zhang, J.; Leitus, G.; Ben-David, Y.; Milstein, D. J. Am. Chem. Soc. 2005, 127, 10840.
[27] Filonenko, G.; van Putten, R.; Schulpen, E.; Hensen, E.; Pidko, E. ChemCatChem 2014, 6, 1526.
[28] Wesselbaum, S.; Moha, V.; Meuresch, M.; Brosinski, S.; Thenert, K. M.; Kothe, J.; Stein, T. V.; Englert, U.; Holscher, M.; Klankermayer, J.; Leitner, W. Chem. Sci. 2015, 6, 693.
[29] Jeletic, M. S.; Mock, M. T.; Appel, A. M.; Linehan, J. C. J. Am. Chem. Soc. 2013, 135, 11533.
[30] Ni, S. F.; Dang, L. Phys. Chem. Chem. Phys. 2016, 18, 4860.
[31] Ryo, T.; Makoto, Y.; Kyoko, N. J. Am. Chem. Soc. 2009, 131, 14168.
[32] Moulton, C. J.; Shaw, B. L. J. Chem. Soc., Dalton Trans. 1976, 1020.
[33] Gupta, M.; Hagen, C.; Kaska, W. C.; Cramer, R. E.; Jensen, C. M. J. Am. Chem. Soc. 1997, 119, 840.
[34] Schmeier, T. J.; Dobereiner, G. E.; Crabtree, R. H.; Hazari, N. J. Am. Chem. Soc. 2011, 133, 9274.
[35] Jin, G.; Werncke, C. G.; Escudie, Y.; Sabo-Etienne, S.; Bon-temps, S. J. Am. Chem. Soc. 2015, 137, 9563.
[36] Chakraborty, S.; Patel, Y. J.; Krause, J. A.; Guan, H. Polyhedron 2012, 32, 30.
[37] Park, S.; Bezier, D.; Brookhart, M. J. Am. Chem. Soc. 2012, 134, 11404.
[38] Gonzalez-Sebastian, L.; Flores-Alamo, M.; J. Garcia, J. Organometallics 2013, 32, 7186.
[39] Motokura, K.; Kashiwame, D.; Miyaji, A; Baba, T. Org. Lett. 2012, 14, 2462.
[40] Huang, K.; Sun, C. L.; Shi, Z. J. Chem. Soc. Rev. 2011, 40, 2435.

Outlines

/