Reviews

Recent Progress in the Chemistry of Keteniminium Salts

  • Li Xiaojin ,
  • Sun Yan ,
  • Zhang Lei ,
  • Peng Bo
Expand
  • a College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004;
    b State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024

Received date: 2016-05-31

  Revised date: 2016-08-16

  Online published: 2016-08-22

Supported by

Project supported by the National Natural Science Foundation of China (No.21502171),the State Key Laboratory of Fine Chemicals (No.KF1512) and the Educational Commission of Zhejiang Province (No.Y201328123)

Abstract

Keteniminium salts are unique heteroallenes. The high electrophility and cumulative double bonds render them versatile reactivity. This paper describes the keteniminium salts formed by electrophilic activation of amides or ynamides with non-metal electrophilic reagents. These keteniminium salts mainly undergo electrophilic addition, eletrophilic substitution, cycloaddition with various nucleophiles. In past few years, the study of keteniminium induced electrophilic rearrangement has progressed rapidly. The newly developed rearrangement transformations are also described here.

Cite this article

Li Xiaojin , Sun Yan , Zhang Lei , Peng Bo . Recent Progress in the Chemistry of Keteniminium Salts[J]. Chinese Journal of Organic Chemistry, 2016 , 36(11) : 2530 -2544 . DOI: 10.6023/cjoc201605046

References

[1] (a) Ye, J. T.; Ma, S. Acc. Chem. Res. 2014, 47, 989.
(b) Krause, N.; Winter, C. Chem. Rev. 2011, 111, 1994.
(c) Ma, S. Chem. Rev. 2005, 105, 2829.
(d) Allen, A. D.; Tidwell, T. D. Chem. Rev. 2013, 113, 7287.
(e) Lu, P.; Wang, Y. G. Chem. Soc. Rev. 2012, 41, 5687.
(f) Alajarin, M.; Marin-Luna, M.; Vidal, A. Eur. J. Org. Chem. 2012, 5637.
(g) Lu, P.; Wang, Y. G. Synlett 2010, 165.
[2] Staudinger, H.; Meyer, J. Helv. Chim. Acta 1919, 619.
[3] (a) Xing, Y.; Cheng, B.; Wang, J.; Lu, P.; Wang, Y. G. Org. Lett. 2014, 16, 4814.
(b) Denmark, S. E.; Wilson, T. W. Angew. Chem., Int. Ed. 2012, 51, 9980.
[4] Alajarín, M.; Vidal, A.; Ortín, M. M. Org. Biomol. Chem. 2003, 1, 4282.
[5] (a) Amold, B.; Regitz, M. Angew. Chem., Int. Ed. 1979, 18, 320.
(b) Alajarín, M.; Sánchez-Andrada, P.; Vidal, A.; Tovar, F. Eur. J. Org. Chem. 2004, 2636.
[6] (a) Molina, P.; Alajarín, M.; Vidal, A. J. Org. Chem. 1991, 56, 4008.
(b) Yang, Y. Y.; Shou, W. G.; Chen, Z. B.; Hong, D.; Wang, Y. G. J. Org. Chem. 2008, 73, 3928.
[7] (a) Alajarín, M.; Bonillo, B.; Ortín, M. M.; Sánchez-Andrada, P.; Vidal, A. Org. Lett. 2006, 8, 5645.
(b) Alajarín, M.; Bonillo, B.; Sánchez-Andrada, P.; Vidal, A. Bautista, D. Org. Lett. 2009, 11, 1365.
[8] Snider, B. B. Chem. Rev. 1988, 88, 793.
[9] Dekorver, K. A.; Li, H.-Y.; Lohse, A. G.; Hayashi, R.; Lu, Z.-J.; Zhang, Y.; Hsung, R. P. Chem. Rev. 2010, 110, 5064.
[10] (a) Madelaine, C.; Valerio, V.; Maulide, N. Chem. Asian J. 2011, 6, 2224.
(b) Kaiser, D.; Maulide, N. J. Org. Chem. 2016, 81, 4421.
[11] Marchand-Brynaert, J.; Ghosez, L. J. Am. Chem. Soc. 1972, 94, 2869.
[12] (a) Charette, A. B.; Grenon, M. Can. J. Chem. 2001, 79, 1694.
(b) Xiao, K.; Wang, A.; Huang, P. Q. Angew. Chem., Int. Ed. 2012, 51, 8314.
(c) Bechara, W. S.; Pelletier, G.; Charette, A. B. Nat. Chem. 2012, 4, 228.
[13] Zificsak, C. A.; Mulder, J. A.; Hsung, R. P.; Rameshkumar, C.; Wei, L.-L. Tetrahedron 2001, 57, 7575.
[14] Rens, M.; Ghosez, L. Tetrahedron Lett. 1970, 11, 3765.
[15] Yashi, H.; Yorimitsu, H.; Oshima, K. Chem. Lett. 2008, 37, 40.
[16] Xu, S.-J.; Liu, J.-Q.; Hu, D.-H.; Bi, X.-H. Green. Chem. 2015, 17, 184.
[17] Compain, G.; Jouvin, K.; Martin-Mingot, A.; Evano, G.; Marrot, J.; Thibaudeau, S. Chem. Commun. 2012, 48, 5196.
[18] Métayer, B.; Compain, G.; Jouvin, K.; Martin-Mingot, A.; Bachmann, C.; Marrot, J.; Evano, G.; Thibaudeau, S. J. Org. Chem. 2015, 80, 3397.
[19] Tona, V.; de la Torre, A.; Padmanaban, M.; Ruider, S.; González, L.; Maulide, N. J. Am. Chem. Soc. 2016, 138, 8348.
[20] Tona, V.; Ruider, S. A.; Berger, M.; Shaaban, S.; Padmanaban, M.; Xie, L.-G.; González, L.; Maulide, N. Chem. Sci. 2016, 7, 6032.
[21] Theunissen, C.; Métayer, B.; Henry, N.; Compain, G.; Marrot, J.; Martin-Mingot, A.; Thibaudeau, S.; Evano, G. J. Am. Chem. Soc. 2014, 136, 12528.
[22] Lecomte, M.; Evano, G. Angew. Chem., Int. Ed. 2016, 55, 4547.
[23] Ghosez, L. Angew. Chem., Int. Ed. 1972, 11, 852.
[24] (a) Zhang, Y.-S. Tetrahedron Lett. 2005, 46, 6483.
(b) Zhang, Y.-S. Tetrahedron 2006, 62, 3917.
[25] Ghosez, L.; Notte, P.; Bernard-Henriet, C.; Maurin, R. Heterocyles 1981, 15, 1179.
[26] Zhang, Y.-S.; Hsung, R. P.; Zhang, X.-J.; Huang, J.; Slafer, B. W.; Davis, A. Org. Lett. 2005, 7, 1047.
[27] Lumbroso, A.; Behra, J.; Kolleth, A.; Dakas, P. Y.; Karadeniz, U.; Catak, S.; Sulzer-Mossé, S.; De Mesmaker, A. Tetrahedron Lett. 2015, 56, 6541.
[28] Villedieu-Percheron, J.; Catak, S.; Zurwerra, D.; Staiger, R.; Lachia, M.; De Mesmaker, A. Tetrahedron Lett. 2014, 55, 2446.
[29] Yamaoka, Y.; Yoshida, T.; Shinozaki, M.; Yamada, K.-I.; Takasu, K. J. Org. Chem. 2015, 80, 957.
[30] (a) Viehe, H. G.; Buijle, R.; Fuks, R.; Merényi, R.; Oth, J. M. F. Angew. Chem., Int. Ed. 1967, 6, 77.
(b) Viehe, H. G. Angew. Chem., Int. Ed. 1967, 6, 767.
[31] Ghosez, L.; Haveaux, B.; Viehe, H. G. Angew. Chem., Int. Ed. 1969, 8, 454.
[32] Marchand-Brynaert, J.; Ghosez, L. J. Am. Chem. Soc. 1972, 94, 2870.
[33] Falmagne, J.-B.; Escudero, J.; Taleb-Sahraoui, S.; Ghosez, L. Angew. Chem., Int. Ed. 1981, 20, 879.
[34] Houge, C.; Frisque-Hesbain, A. M.; Mockel, A.; Ghosez, L. J. Am. Chem. Soc. 1982, 104, 2920.
[35] Brown, R. C. D.; Bataille, C. J. R.; Bruton, G.; Hinks, J. D.; Swain, N. A. J. Org. Chem. 2001, 66, 6719.
[36] Shim, P.-J.; Kim, H.-D. Tetrahedron Lett. 1998, 39, 9517.
[37] Depré, D.; Chen, L.-Y.; Ghosez, L. Tetrahedron 2003, 59, 6797.
[38] O'Brien, J. M.; Kingsbury, J. S. J. Org. Chem. 2011, 76, 1662.
[39] Kolleth, A.; Lumbroso, A.; Tanriver, G.; Catak, S.; Sulzer-Mossé, S.; De Mesmaker, A. Tetrahedron Lett. 2016, 57, 2697.
[40] (a) Lumbroso, A.; Catak, S.; Sulzer-Mossé, S.; De Mesmaker, A. Tetrahedron Lett. 2014, 55, 5147.
(b) Lumbroso, A.; Catak, S.; Sulzer-Mossé, S.; De Mesmaker, A. Tetrahedron Lett. 2014, 55, 6721.
[41] Domigo, L. R.; Ríos-Gutiérrez, M.; Pérez, P. Tetrahedron 2015, 71, 2421.
[42] Shindoh, N.; Kitaura, K.; Takemoto, Y.; Takasu, K. J. Am. Chem. Soc. 2011, 133, 8470.
[43] Ficini, J. Tetrahedron Lett. 1966, 7, 6425.
[44] Mulder, J. A.; Hsung, R. P.; Frederick, M. O.; Tracey, M. R.; Zificsak, C. A. Org. Lett. 2002, 4, 1383.
[45] Madelaine, C.; Valerio, V.; Maulide, N. Angew. Chem., Int. Ed. 2010, 49, 1583.
[46] Valerio, V.; Madelaine, C.; Maulide, N. Chem. Eur. J. 2011, 17, 4742.
[47] Peng, B.; O'Donovan, D. H.; Jurberg, I. D.; Maulide, N. Chem. Eur. J. 2012, 18, 16292.
[48] Peng, B.; Geerdink, D.; Maulide, N. J. Am. Chem. Soc. 2013, 135, 14968.
[49] Peng, B.; Geerdink, D.; Farès, C.; Maulide, N. Angew. Chem., Int. Ed. 2014, 53, 5462.
[50] Peng, B.; Huang, X.-L.; Xie, L.-G.; Maulide, N. Angew. Chem., Int. Ed. 2014, 53, 8718

Outlines

/