Chinese Journal of Organic Chemistry >
Synthesis, Spectral Properties and Theoretical Studies of 1,4-Bis[2-(4-pyridyl)ethenyl]benzene Derivatives
Received date: 2016-06-29
Revised date: 2016-09-02
Online published: 2016-10-18
Supported by
Project supported by the Opening Subjects of Key Laboratory of Functional Organometallic Materials of Hunan Province (No. GN15K05), and the Scientific Research Foundation of the Hengyang Normal University (No. 14B23).
Four asymmetric hydrogen-bond acceptors of 1,4-bis[2-(4-pyridyl)ethenyl]benzene derivatives with higher yields were synthesized through the classical Witting-Horner and Sonogashira cross-coupling reactions, and their structures and spectral properties were investigated. The series of compounds all have been characterized by NMR, MS and element analysis. Crystal structures indicated that the conformation of hydrogen-bond self-assemble may be change due to the hindrance effect from the arylacetyl group in o-position of benzene. UV-Vis spectra combined with time-dependent density functional theory (TDDFT) calculation results showed that target compounds all display a strong π→π* and ICT transition absorptions. Fluorescence spectrum indicated that gradual increasing of conjugate systems make their emission peak tend to a red shift, which is conducive to π-π accumulation. Above results will provide certain synthetic basis and theoretical foundation for subsequent studies about regioselectivity of hydrogen-bond self-assemble and cyclization reactions from light.
Ou Yaping , Zhang Jing , Yu Jiangxi , Zhu Xiaoming . Synthesis, Spectral Properties and Theoretical Studies of 1,4-Bis[2-(4-pyridyl)ethenyl]benzene Derivatives[J]. Chinese Journal of Organic Chemistry, 2017 , 37(2) : 394 -402 . DOI: 10.6023/cjoc201606040
[1] Tozawa, T.; Jones, J. T. A.; Swamy, S. I.; Jiang, S.; Adams, D. J.; Shakespeare, S.; Clowes, R.; Bradshaw, D.; Hasell, T.; Chong, S. Y.; Tang, C.; Thompson, S.; Parker, J.; Trewin, A.; Bacsa, J.; Slawin, A. M. Z.; Steiner, A.; Cooper, A. I. Nat. Mater. 2009, 8, 973.
[2] Yan, X.; Xu, D.; Chi, X.; Chen, J.; Dong, S.; Ding, X.; Yu, Y.; Huang, F. Adv. Mater. 2012, 24, 362.
[3] Hu, Q. D.; Tang, G. P.; Chu, P. K. Acc. Chem. Res. 2014, 47, 2017.
[4] Kuehl, C. J.; Huang, S. D.; Stang, P. J. J. Am. Chem. Soc. 2001, 123, 9634.
[5] Ensslen, P and Wagenknecht, H. Acc. Chem. Res., 2015, 48, 2724.
[6] Koshti, V. S.; Mote, N. R.; Gonnade, R. G. and Chikkali, S. H. Organometallics 2015, 34, 4802.
[7] Elemans, J. A. A. W.; Slangen, R. R. J.; Rowan, A. E.; Nolte, R. J. M. J. Org. Chem., 2003, 68, 9040.
[8] MacGillivray, L. R.; Papaefstathiou, G. S.; Friscic, T.; Hamilton, T. D.; Bucar, D-K.; Chu Q.; Varshney, D. B.; Georgiev, I. V. Acc. Chem. Res. 2008, 41, 280.
[9] Sokolov, A. N.; Friscic, T.; MacGillivray, L. R. J. Am. Chem. Soc. 2006, 128, 2806.
[10] Sokolov, A. N.; Bucar, D-K.; Baltrusaitis, J.; Gu, S. X.; MacGillivray, L. R. Angew. Chem. 2010, 122, 4369.
[11] MacGillivray, L. R. J. Org. Chem. 2008, 73, 3311.
[12] Friscic, T.; Drab, D. M.; MacGillivray, L. R. Org. Lett. 2004, 6, 4647.
[13] Frišcic, T.; MacGillivray, L. R. Chem. Commun. 2003, 1306.
[14] Jiang, B.; Lei, Y.; Zhao, X.-L. J. Org. Chem. 2008, 73, 7833.
[15] Lahann, J.; Höcher, H.; Langer, R. Angew. Chem., Int. Ed. 2001, 40, 726.
[16] Sillen, C.; Liu, N.; Ho, W.; Maddox, J. B.; Mukamel, S.; Liu, B.; Bazan, G. C. Nano Lett. 2008, 8, 208.
[17] Bolm, C.; Whelligan, D. K. Adv. Synth. Catal. 2006, 348, 2093.
[18] Kay, K.-Y.; Baek, Y. G. Chem. Ber. /Recl. 1997, 130, 581.
[19] Wu, X. H.; Jin, S.; Liang, J. H.; Li, Z. Y.; Yu, G.-A.; Liu, S. H. Organometallics 2009, 28, 2450.
[20] Wang, L.; Tao, X-L.; Yang, J-X.; Yu, W-T.; Ren, Y.; Xin, Y.; Liu, Z.; Jiang, M-H. J Solid State Chem. 2004, 177, 4293.
[21] Kaminker, R.; Lahav, M.; Motiei, L.; Vartanian, M.; Popo-vitz-Biro, R.; Iron, M. A.; vander Boom, M. E. Angew. Chem., Int. Ed. 2010, 49, 1218.
[22] Hrobarikova, V.; Hrobarik, P.; Gajdos, P.; Fitilis, I.; Fakis, M.; Persephonis, P.; Zahradn?k, P. J. Org. Chem. 2010, 75, 3053.
/
〈 |
|
〉 |