ARTICLE

Naphthalene Diimides Endcapped with Ethynylazulene: Molecular Design, Synthesis and Properties

  • Xin Hanshen ,
  • Ge Congwu ,
  • Fu Lina ,
  • Yang Xiaodi ,
  • Gao Xike
Expand
  • a Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032;
    b School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237;
    c Laboratory of Advanced Materials, Fudan University, Shanghai 200433

Received date: 2016-09-27

  Revised date: 2016-10-25

  Online published: 2016-11-17

Supported by

Project supported by the National Natural Science Foundation of China (No. 21522209), the "Strategic Priority Research Program" (No. XDB12010100) and the Shanghai Science and Technology Committee (No. 16JC1400603).

Abstract

Azulene is noteworthy for its deep blue color with a large dipole moment. Compared to other unsaturated aromatic hydrocarbons, azulenes show unique photophysical and electrical properties. Herein, two isomers of 1,4,5,8-naphthalene diimide (NDI) endcapped with ethynylazulene units (1 and 2) are presented, which are capped with five-membered and seven-membered rings of azulene moieties, respectively. It is interesting that these two compounds show remarkably different physicochemical properties, thermal stabilities and organic field-effect transistors (OFET) performance resulting from the different connections of an electron-rich five-membered ring and an electron-poor seven-membered ring. Density functional theory (DFT) calculations reveal that the lowest unoccupied molecular orbital (LUMO) energy of 2 (endcapped with 6-ethynylalzulene) is lower than that of 1 (endcapped with 2-ethynylalzulene), and 2 makes the electrons of LUMO more delocalized, which favor the overlap of LUMO between molecules, thus to obtain higher mobility for 2. OFETs based on thin films of these two isomers were fabricated with conventional spin-coated techniques. Under nitrogen atmosphere, 1 and 2 show n-type semiconducting properties with electron mobilities of up to 0.022 and 0.16 cm2·V-1·s-1, respectively, which is consistent with the DFT results.

Cite this article

Xin Hanshen , Ge Congwu , Fu Lina , Yang Xiaodi , Gao Xike . Naphthalene Diimides Endcapped with Ethynylazulene: Molecular Design, Synthesis and Properties[J]. Chinese Journal of Organic Chemistry, 2017 , 37(3) : 711 -719 . DOI: 10.6023/cjoc201609029

References

[1] Lemal, D. M.; Goldman, G. D. J. Chem. Educ. 1988, 65, 923.
[2] Michl, J.; Thulstrup, E. W. Tetrahedron 1976, 32, 205.
[3] (a) Rekka, E.; Chrysselis, M.; Siskou, I.; Kourounakis, A. Chem. Pharm. Bull. 2002, 50, 904.
(b) Ishihara, M.; Wakabayashi, H.; Motohashi, N.; Sakagami, H. Anticancer Res. 2011, 31, 515.
(c) Yang, F.; Wang, H. F.; Zhang, L. Y.; Shi, W. Q.; Zhang, P.; Li, Y.; Yin, S. F. Chin. J. Org. Chem. 2011, 31, 2106 (in Chinese). (杨芳, 王海峰, 张露昀, 石万棋, 张萍, 李颖, 尹述凡, 有机化学, 2011, 31, 2106.)
(d) Wang, D. L.; Dong, Z. X.; Jiao, L. D. Chin. J. Org. Chem. 2013, 33, 1559 (in Chinese). (王道林, 董哲, 徐姣, 李帝, 有机化学, 2013, 33, 1559.)
[4] Dong, J. X.; Zhang, H. L. Chin. Chem. Lett. 2016, 27, 1097.
[5] Ito, S.; Inabe, H.; Morita, N.; Ohta, K.; Kitamura, T.; Imafuku, K. J. Am. Chem. Soc. 2003, 125, 1669.
[6] (a) Salman, H.; Abraham, Y.; Tal, S.; Meltzman, S.; Kapon, M.; Tessler, N.; Speiser, S.; Eichen, Y. Eur. J. Org. Chem. 2005, 2207.
(b) Zielinski, T.; Kedziorek, M. J.; Jurczak, J. Chem.-Eur. J. 2008, 14, 838.
[7] (a) Wang, X.; Ng, J. K.-P.; Jia, P.; Lin, T.; Cho, C. M.; Xu, J.; Lu, X.; He, C. Macromolecules 2009, 42, 5534.
(b) Amir, E.; Amir, R. J.; Campos, L. M.; Hawker, C. J. J. Am. Chem. Soc. 2011, 133, 10046.
(c) Koch, M.; Blacque, O.; Venkatesan, K. Org. Lett. 2012, 14, 1580.
(d) Murai, M.; Amir, E.; Amir, R. J.; Hawker, C. J. Chem. Sci. 2012, 3, 2721.
(e) Ghazvini Zadeh, E. H.; Tang, S.; Woodward, A. W.; Liu, T.; Bondar, M. V.; Belfield, K. D. J. Mater. Chem. C 2015, 3, 8495.
(f) Murai, M.; Takami, K.; Takeshima, H.; Takai, K. Org. Lett. 2015, 17, 1798.
[8] (a) Wang, F. K.; Lai, Y. H.; Kocherginsky, N. M.; Kosteski, Y. Y. Org. Lett. 2003, 5, 995.
(b) Wang, F. K.; Lai, Y. H.; Han, M. Y. Macromolecules 2004, 37, 3222.
[9] Cristian, L.; Sasaki, I.; Lacroix, P. G.; Donnadieu, B.; Asselberghs, I.; Clays, K.; Razus, A. C. Chem. Mater. 2004, 16, 3543.
[10] (a) Kurotobi, K.; Kim, K. S.; Noh, S. B.; Kim, D.; Osuka, A. Angew. Chem., Int. Ed. 2006, 45, 3944.
(b) Wang, F. K.; Lin, T. T.; He, C. B.; Chi, H.; Tang, T.; Lai, Y. H. J. Mater. Chem. 2012, 22, 10448.
(c) Ince, M.; Bartelmess, J.; Kiessling, D.; Dirian, K.; Martinez-Diaz, M. V.; Torres, T.; Guldi, D. M. Chem. Sci. 2012, 3, 1472.
[11] (a) Yamaguchi, Y.; Maruya, Y.; Katagiri, H.; Nakayama, K.; Ohba, Y. Org. Lett. 2012, 14, 2316.
(b) Yamaguchi, Y.; Ogawa, K.; Nakayama, K.; Ohba, Y.; Katagiri, H. J. Am. Chem. Soc. 2013, 135, 19095.
(c) Yao, J. J.; Cai, Z. X.; Liu, Z. T.; Yu, C. M.; Luo, H. W.; Yang, Y.; Yang, S. F.; Zhang, G. X.; Zhang, D. Q. Macromolecules 2015, 48, 2039.
[12] Puodziukynaite, E.; Wang, H. W.; Lawrence, J.; Wise, A. J.; Russell, T. P.; Barnes, M. D.; Emrick, T. J. Am. Chem. Soc. 2014, 136, 11043.
[13] Nishimura, H.; Ishida, N.; Shimazaki, A.; Wakamiya, A.; Saeki, A.; Scott, L. T.; Murata, Y. J. Am. Chem. Soc. 2015, 137, 15656.
[14] Xin, H. S.; Ge, C. W.; Yang, X. D.; Gao, H. L.; Yang, X. C.; Gao, X. K. Chem. Sci. 2016, 7, 6701.
[15] (a) Lokey, R. S.; Iverson, B. L. Nature 1995, 375, 303.
(b) Zych, A. J.; Iverson, B. L. J. Am. Chem., Soc. 2000, 122, 8898.
(c) Panto?, G. D.; Pengo, P.; Sanders, J. K. M. Angew. Chem. Int. Ed. 2007, 46, 194.
[16] (a) Redmore, N. P.; Rubtsov, I. V.; Therien, M. J. J. Am. Chem. Soc. 2003, 125, 8769.
(b) Kelley, R. F.; Tauber, M. J.; Wasielewski, M. R. J. Am. Chem. Soc. 2006, 128, 4779.
(c) Reczek, J. J.; Villazor, K. R.; Lynch, V.; Swager, T. M.; Iverson, B. L. J. Am. Chem. Soc. 2006, 128, 7995.
[17] (a) Takenaka, S.; Yamashita, K.; Takagi, M.; Uto, Y.; Kondo, H. Anal. Chem. 2000, 72, 1334.
(b) Rogers, J. E.; Weiss, S. J.; Kelly, L. A. J. Am. Chem. Soc. 2000, 122, 427.
(c) Abraham, B.; McMasters, S.; Mullan, M. A.; Kelly, L. A. J. Am. Chem. Soc. 2004, 126, 4293.
[18] Miller, L. L.; Mann, K. R. Acc. Chem. Res. 1996, 29, 417.
[19] (a) Katz, H. E.; Lovinger, A. J.; Johnson, J.; Kloc, C.; Siegrist, T.; Li, W.; Lin, Y.-Y.; Dodabalapur, A. Nature 2000, 404, 478.
(b) Würthner, F. Angew. Chem., Int. Ed. 2001, 40, 1037.
(c) Jones, B. A.; Facchetti, A.; Wasielewski, M. R.; Marks, T. J. J. Am. Chem. Soc. 2007, 129, 15259.
[20] (a) Gao, X. K.; Di, C. A.; Hu, Y. B.; Yang, X. D.; Fan, H. Y.; Zhang, F.; Liu, Y. Q.; Li, H. X.; Zhu, D. B. J. Am. Chem. Soc. 2010, 132, 3697.
(b) Hu, Y. B.; Gao, X. K.; Di, C. A.; Yang, X. D.; Zhang, F.; Liu, Y. Q.; Li, H. X.; Zhu, D. B. Chem. Mater. 2011, 23, 1204.
(c) Zhang, F.; Hu, Y.; Schuettfort, T.; Di, C. A.; Gao, X.; McNeill, C. R.; Thomsen, L. S.; Mannsfeld, C.; Yuan, W.; Sirringhaus, H.; Zhu, D. B. J. Am. Chem. Soc. 2013, 135, 2338.
(d) Hu, Y. B.; Wang, Z. L.; Zhang, X.; Yang, X. D.; Li, H. X.; Gao, X. K. Chin. J. Chem. 2013, 31, 1428.
[21] Chang, J.; Ye, Q.; Huang, K.; Zhang, J. Chen, Z.; Wu, J.; Chi, C. Org. Lett. 2012, 14, 2964.
[22] Li, Y. H.; Zhang, G. X.; Zhang, W.; Wang, J. G.; Chen, X.; Liu, Z. T.; Yan, Y. L.; Zhao, Y. S.; Zhang, D. Q. Chem. Asian J. 2014, 9, 3207.
[23] (a) Zhang, J.; Petoud, S. Chem. Eur. J. 2008, 14, 1264.
(b) Nozoe, T.; Takase, K.; Shimazaki, N. Bull. Chem. Soc. Jpn. 1964, 37, 1644.
(c) Takase, K.; Asao, T.; Takagi, Y.; Nozoe, T. Chem. Commun. (London) 1968, 368b.
(d) McDonald, R. N.; Richmond, J. M.; Curtis, J. R.; Petty, H. E.; Hoskins, T. L. J. Org. Chem. 1976, 41, 1811.
(e) Koch, M.; Blacque, O.; Venkatesan, K. Org. Lett. 2012, 14, 1580.
(f) Nozoe, T.; Seto, S.; Matsumura, S.; Murase, Y. Bull. Chem. Soc. Jpn. 1962, 35, 1179.
(g) Ito, S.; Inabe, H.; Okujima, T.; Morita, N.; Watanabe, M.; Harada, N.; Imafuku, K. J. Org. Chem. 2001, 66, 7090.
[24] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H. Vreven, T.; Montgomery, J. A.; Jr., Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision A.02, Gaussian, Inc, Wallingford CT, 2009.
[25] Mishra, A.; Behera, R. K.; Behera, P. K.; Mishra, B. K.; Behera, G. B. Chem. Rev. 2000, 100, 1973.

Outlines

/