REVIEW

Advances of Unstrained Carbon-Carbon Single Bond Cleavage with Oxygen

  • Wu Kong ,
  • Song Chan ,
  • Cui Dongmei
Expand
  • College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014

Received date: 2016-09-28

  Revised date: 2016-10-28

  Online published: 2016-11-17

Abstract

Unstrained carbon-carbon single bonds are ubiquitous in organic compounds, the cleavage of this bond is one of the most significant and challenging subject in organic chemistry. Oxidative cleavage of unstrained carbon-carbon single bond has become a great tendency, in particular, the transition metal-catalyzed oxidative cleavage reaction, which had made significant progress in recent years. Oxygen, as the most inexpensive and environmentally friendly oxidant, has been widely used in various organic reactions. This review is an overview of recent advances of unstrained carbon-carbon single bond cleavage with oxygen according to whether transition metal catalysis is needed.

Cite this article

Wu Kong , Song Chan , Cui Dongmei . Advances of Unstrained Carbon-Carbon Single Bond Cleavage with Oxygen[J]. Chinese Journal of Organic Chemistry, 2017 , 37(3) : 586 -602 . DOI: 10.6023/cjoc201609030

References

[1] (a) Padwa, A.; Zhang, H. J. Org. Chem. 2007, 72, 2570.
(b) Ikeda, S.; Shibuya, M.; Iwabuchi, Y. Chem. Commun. 2007, 38, 504.
[2] (a) Huber, G. W.; Iborra, S.; Corma, A. Chem. Rev. 2006, 106, 4044.
(b) Hu, S.; Shima, T.; Hou, Z. Nature 2014, 512, 413.
[3] Seo, J.-H.; Lee, S.-M.; Lee, J.; Park, J.-B. J. Biotechnol. 2015, 216, 158.
[4] (a) Chen, F.; Wang, T.; Jiao, N. Chem. Rev. 2014, 114, 8613.
(b) Ruhland, K. Eur. J. Org. Chem. 2012, 2012, 2683.
(c) Jun, C. H. Chem. Soc. Rev. 2004, 33, 610.
(d) Liu, H.; Feng, M.; Jiang, X. Chem.-Asian J. 2014, 9, 3360.
(e) Dermenci, A.; Coe, J. W.; Dong, G. Org. Chem. Front. 2014, 1, 567.
(f) Amadio, E.; Di Lorenzo, R.; Zonta, C.; Licini, G. Coord. Chem. Rev. 2015, 301-302, 147.
(g) Murakami, M.; Ito, Y. Top. Organomet. Chem. 1999, 3, 97.
[5] Miyaura, N.; Suzuki, A.; Miyaura, N.; Suzuki, A. J. Chem. Soc., Chem. Commun. 1979, 19, 866.
[6] Heck, R. F. J. Am. Chem. Soc. 1968, 90, 5518.
[7] Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 16, 4467.
[8] Hanson, S. K.; Baker, R. T.; Gordon, J. C.; Scott, B. L.; Sutton, A. D.; Thorn, D. L. J. Am. Chem. Soc. 2009, 131, 428.
[9] Kirihara, M.; Yoshida, K.; Noguchi, T.; Naito, S.; Matsumoto, N.; Ema, Y.; Torii, M.; Ishizuka, Y.; Souta, I. Tetrahedron Lett. 2010, 51, 3619.
[10] Rozhko, E.; Raabova, K.; Macchia, F.; Malmusi, A.; Righi, P.; Accorinti, P.; Alini, S.; Babini, P.; Cerrato, G.; Manzoli, M.; Cavani, F. ChemCatChem 2013, 5, 1998.
[11] Liu, Z.-Q.; Zhao, L.; Shang, X.; Cui, Z. Org. Lett. 2012, 14, 3218.
[12] Zhao, Y.; Cai, S.; Li, J.; Wang, D. Z. Tetrahedron 2013, 69, 8129.
[13] Tnay, Y. L.; Chiba, S. Chem.-Asian J. 2015, 10, 873.
[14] Cooke, H. A.; Peck, S. C.; Evans, B. S.; van der Donk, W. A. J. Am. Chem. Soc. 2012, 134, 15660.
[15] Chen, Y. C.; Zhu, M. K.; Loh, T. P. Org. Lett. 2015, 17, 2712.
[16] Zhang, L; Bi, X. H.; Guan, X. X.; Li, Q.; Barry, B. D.; Liao, P. Q. Angew. Chem., Int. Ed. 2013, 52, 11303.
[17] Zhou, W.; Fan, W.; Jiang, Q.; Liang, Y.-F.; Jiao, N. Org. Lett. 2015, 17, 2542.
[18] Xing, Q.; Lv, H.; Xia, C.; Li, F. Chem. Commun. 2016, 52, 489.
[19] Wang, J.; Chen, W.; Zuo, S.; Liu, L.; Zhang, X.; Wang, J. Angew. Chem., Int. Ed. 2012, 51, 12334.
[20] Sun, H.; Yang, C.; Gao, F.; Li, Z.; Xia, W. Org. Lett. 2013, 15, 624.
[21] Wang, Z.; Li, L.; Huang, Y. J. Am. Chem. Soc. 2014, 136, 12233.
[22] Zhang, C.; Wang, X.; Jiao, N. Synlett 2014, 45, 1458.
[23] Maji, A.; Rana, S.; Akanksha; Maiti, D. Angew. Chem., Int. Ed. 2014, 53, 2428.
[24] Yu, J.; Yang, H.; Jiang, Y.; Fu, H. Chem.-Eur. J. 2013, 19, 4271.
[25] Song, R. J.; Liu, Y.; Hu, R. X.; Liu, Y. Y.; Wu, J. C.; Yang, X. H.; Li, J. H. Adv. Synth. Catal. 2011, 353, 1467.
[26] Paria, S.; Halder, P.; Paine, T. K. Angew. Chem., Int. Ed. 2012, 51, 6299.
[27] Sathyanarayana, P.; Ravi, O.; Muktapuram, P. R.; Bathula, S. R. Org. Biomol. Chem. 2015, 13, 9681.
[28] Tsang, A. S. K.; Kapat, A.; Schoenebeck, F. J. Am. Chem. Soc. 2016, 138, 518.
[29] Lan, J.; Lin, J.; Chen, Z.; Yin, G. ACS Catal. 2015, 5, 2035.
[30] Zhang, C.; Feng, P.; Jiao, N. J. Am. Chem. Soc. 2013, 135, 15257.
[31] Xiaoqiang, H.; Xinyao, L.; Miancheng, Z.; Song, S.; Conghui, T.; Yizhi, Y.; Ning, J. J. Am. Chem. Soc. 2014, 136, 14858.
[32] Ma, R.; He, L.-N.; Liu, A.-H.; Song, Q.-W. Chem. Commun. 2016, 52, 2145.
[33] Parthasarathi, S.; Satrajit, I.; Kaliappan, K. P. Org. Lett. 2014, 16, 6212.
[34] Tang, C.; Jiao, N. Angew. Chem., Int. Ed. 2014, 53, 6528.
[35] Ding, W.; Song, Q. Org. Chem. Front. 2015, 2, 765.
[36] Chen, X.; Chen, T.; Li, Q.; Zhou, Y.; Han, L.-B.; Yin, S.-F. Chem.-Eur. J. 2014, 20, 12234.
[37] Zhang, C.; Xu, Z.; Shen, T.; Wu, G.; Zhang, L.; Jiao, N. Org. Lett. 2012, 14, 2362.
[38] Sun, J.; Tan, Q.; Yang, W.; Liu, B.; Xu, B. Adv. Synth. Catal. 2014, 356, 388.
[39] Yan, Y.; Shi, M.; Niu, B.; Meng, X.; Zhu, C.; Liu, G.; Chen, T.; Liu, Y. RSC Adv. 2016, 6, 36192.
[40] Hattori, T.; Takakura, R.; Ichikawa, T.; Sawama, Y.; Monguchi, Y.; Sajiki, H. J. Org. Chem. 2016, 81, 2737.
[41] Zhou, Y.; Rao, C.; Mai, S.; Song, Q. J. Org. Chem. 2016, 81, 2027.
[42] Zhou, M.; Chen, M.; Zhou, Y.; Yang, K.; Su, J.; Du, J.; Song, Q. Org. Lett. 2015, 17, 1786.
[43] Liu, H.; Dong, C.; Zhang, Z.; Wu, P.; Jiang, X. Angew. Chem., Int. Ed. 2012, 51, 12570.
[44] Liu, H.; Jiang, X. Synlett 2013, 24, 1311.
[45] Guo, R.; Zhu, C.; Sheng, Z.; Li, Y.; Yin, W.; Chu, C. Tetrahedron Lett. 2015, 56, 6223.
[46] Rao, S. N.; Mohan, D. C.; Adimurthy, S. Tetrahedron 2016, 72, 4889.

Outlines

/