ARTICLE

Palladium-Catalyzed C-H Alkoxycarbonylation of Caffeines: Synthesis of 8-Ester-substituted Caffeines

Expand
  • a College of Chemistry & Chemical Engineering, Fujian Normal University, Fuzhou 350007;
    b Fujian Key Laboratory of Polymer Materials, Fuzhou 350007

Received date: 2016-10-17

  Revised date: 2016-12-08

  Online published: 2016-12-12

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 2110322, 6152010615) and the Foundation of Fujian Educational Committee (No. JK2014010).

Abstract

Carbonyl-substituted caffeine derivatives have attracted much attention due to their potent pharmaceutical activity and interesting fluorescent properties. An efficient synthesis of 8-ester-substituted caffeines through palladium-catalyzed C-H alkoxycarbonylation was developed. The reaction was carried out in the presence of PdCl2(PPh3)2 and Cu(OAc)2 under 101 kPa CO atmosphere in 1,4-dioxane, providing diversified 8-ester-substituted caffeines in reasonable to good yields. The approach was characterized by using atmospheric pressure of carbon monoxide and broad functional group tolerance.

Cite this article

Su Lü, Xiao Hanbing, Yuan Yumeng, Zhang Xiaofeng, Lin Shen, Huang Qiufeng . Palladium-Catalyzed C-H Alkoxycarbonylation of Caffeines: Synthesis of 8-Ester-substituted Caffeines[J]. Chinese Journal of Organic Chemistry, 2017 , 37(3) : 630 -635 . DOI: 10.6023/cjoc201610028

References

[1] (a) Quintero-Duque, S.; Dyballa, K. M.; Fleischer, I. Tetrahedron Lett. 2015, 56, 2634.
(b) Wu, X.-F.; Fang, X.; Wu, L.; Jackstell, R.; Neumann, H.; Beller, M. Acc. Chem. Res. 2014, 47, 1041.
(c) Sumino, S.; Fusano, A.; Fukuyama, T.; Ryu, I. Acc. Chem. Res. 2014, 47, 1563.
(d) Barnard, C. F. J. Organometallics 2008, 27, 5402.
(e) Wu, X.-F.; Neumann, H.; Beller, M. Chem. Rev. 2013, 113, 1.
(f) Omae, I. Coordin. Chem. Rev. 2011, 255, 139.
[2] (a) Schoenberg, A.; Bartoletti, I.; Heck, R. F. J. Org. Chem. 1974, 39, 3318.
(b) Schoenberg, A.; Heck, R. F. J. Org. Chem. 1974, 39, 3327.
(c) Schoenberg, A.; Heck, R. F. J. Am. Chem. Soc. 1974, 96, 7761.
[3] (a) Wu, L.; Fang, X.; Liu, Q.; Jackstell, R.; Beller, M.; Wu, X.-F. ACS Catal. 2014, 4, 2977.
(b) Sumino, S.; Fusano, A.; Fukuyama, T.; Ryu, I. Acc. Chem. Res. 2014, 47, 1563.
(c) Wu, X.-F.; Neumann, H.; Beller, M. Chem. Soc. Rev. 2011, 40, 4986.
(d) Brennführer, A.; Neumann, H.; Beller, M. Angew. Chem., Int. Ed. 2009, 48, 4114.
(e) Sargent, B. T.; Alexanian, E. J. J. Am. Chem. Soc. 2016, 138, 7520.
[4] (a) Liu, B.; Hu, F.; Shi, B.-F. ACS Catal. 2015, 5, 1863.
(b) Wu, X.-F.; Neumann, H.; Beller, M. ChemSusChem 2013, 6, 229.
(c) Liu, Q.; Zhang, H.; Lei, A. Angew. Chem., Int. Ed. 2011, 50, 10788.
(d) Gadge, S. T.; Bhanage, B. M. RSC Adv. 2014, 4, 10367.
(e) Fenner, S.; Ackermann, L. Green Chem. 2016, 18, 3804.
(f) Boogaerts, I. I. F.; Nolan, S. P. J. Am. Chem. Soc. 2010, 132, 8858.
[5] (a) Müller, C. E.; Jacobson, K. A. Biochim. Biophys. Acta 2011, 1808, 1290.
(b) Stydom, B.; Bergh, J. J.; Petzer, J. P. Eur. J. Med. Chem. 2011, 46, 3474.
(c) Van der Walt, M. M.; Terre'Blanche, G.; Petzer, A.; Lourens, A. C. U.; Petzer, J. P. Bioorg. Chem. 2013, 49, 49.
(d) Rivara, S.; Piersanti, G.; Bartoccini, F.; Diamantini, G.; Pala, D.; Riccioni, T.; Stasi, M. A.; Cabri, W.; Borsini, F.; Mor, M.; Tarzia, G.; Minetti, P. J. Med. Chem. 2013, 56, 1247.
(e) Baraldi, P. G.; Baraldi, S.; Saponaro, G.; Preti, D.; Romagnoli, R.; Piccagli, L.; Cavalli, A.; Recanatini, M.; Moorman, A. R.; Zaid, A. N.; Varani, K.; Borea, P. A.; Tabrizi, M. J. J. Med. Chem. 2012, 55, 797.
[6] Uchil, V.; Seo, B.; Nair, V. J. Org. Chem. 2007, 72, 8577.
[7] (a) Zhang, H.; Zhou, L.; Zhu, Z.; Yang, C. Chem. Eur. J. 2016, 22, 9886.
(b) Kocaoglu, O.; Carlson, E. E. Nat. Chem. Biol. 2016, 12, 472.
(c) Rice, D. R.; Clear, K. J.; Smith, B. D. Chem. Commun. 2016, 52, 8787.
[8] (a) Greco, N. J.; Tor, Y. Tetrahedron 2007, 63, 3515.
(b) Kim, D.; Lee, J. H.; Hong, S.-S.; Hong, S. Org. Lett. 2010, 12, 1212.
(c) Zhao, D.; Wang, W.; Yang, F.; Lan, J.; Yang, L.; Gao, G.; You, J. Angew. Chem., Int. Ed. 2009, 48, 3296.
(d) Huang, Y.; Song, F.; Wang, Z.; Xi, P.; Wu, N.; Wang, Z.; Lan, J.; You, J. Chem. Commun. 2012, 48, 2864.
[9] Heer, J. P.; Smith, I. E. D. WO 2007017265, 2007[Chem. Abstr. 2007, 146, 251660].
[10] (a) Neufeldt, S. R.; Sanford, M. S. Acc. Chem. Res. 2012, 45, 936.
(b) Li, H.; Shi, Z. Prog. Chem. 2010, 22, 1414 (in Chinese).(李湖, 施章杰, 化学进展, 2010, 22, 1414).
(c) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147.
(d) Liu, C.; Yuan, J.; Gao, M.; Tang, S.; Li, W.; Shi, R.; Lei, A. Chem. Rev. 2015, 115, 12138.
(e) Chen, Z.; Wang, B.; Zhang, J.; Yu, W.; Liu, Z.; Zhang, Y. Org. Chem. Front. 2015, 2, 1107.
(f) Gang, F.; Xu, G.; Dong, T.; Yang, L.; Du, Z. Chin. J. Org. Chem. 2015, 35, 1428 (in Chinese).(刚芳莉, 徐关利, 董涛生, 杨丽, 杜正银, 有机化学, 2015, 35, 1428.)
[11] (a) Lang, R.; Shi, L.; Li, D.; Xia, C.; Li, F. Org. Lett. 2012, 14, 4130.
(b) Chen, M.; Ren, Z.-H.; Wang, Y.-Y.; Guan, Z.-H. J. Org. Chem. 2015, 80, 1258.
(c) Li, X.; Li, X.; Jiao, N. J. Am. Chem. Soc. 2015, 137, 9246.
(d) Yoo, E. J.; Wasa, M, Yu, J.-Q. J. Am. Chem. Soc. 2010, 132, 17378.
(e) Lian, Z.; Friis, S. D.; Skrydstrup, T. Chem. Commun. 2015, 51, 1870.
(f) Liu, B.; Hu, F.; Shi, B.-F. ACS Catal. 2015, 5, 1863.
[12] Chen, M.; Ren, Z.-H.; Wang, R.-Y.; Guan, Z.-H. Angew. Chem., Int. Ed. 2013, 52, 14196.
[13] Lang, R.; Wu, J.; Shi, L.; Xia, C.; Li, F. Chem. Commun. 2011, 47. 12553.
[14] Zhang, H.; Liu, D.; Chen, C.; Liu, C.; Lei, A. Chem. Eur. J. 2011, 17, 9581.
[15] (a) Malakar, C. C.; Schmidt, D.; Conrad, J.; Beifuss, U. Org. Lett. 2011, 13, 1378.
(b) Daly, J. W.; Padgett, W. L.; Shamim, M. T. J. Med. Chem. 1986, 29, 1305.

Outlines

/