REVIEW

Recent Advances in Dihalogenation of Alkenes

  • He Tianxiong ,
  • Zeng Xianghua
Expand
  • College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001

Received date: 2016-11-29

  Revised date: 2016-12-26

  Online published: 2017-01-17

Supported by

Project supported by the National Natural Science Foundation of Zhejiang Province (No. LY17B030011) and the Jiaxing Science and Technology Project (No. 2015AY11014).

Abstract

The vicinal dihalogens structure motif can be found in a variety of natural products and pharmaceuticals. The dihalogenation of alkenes is a commonly employed strategy for the rapid construction of carbon-halogen bonds in organic synthesis. In recent years, main progress has been achieved in the dihalogenation of alkenes. Based on our work and research interests, the aim of this review is to give an overview of the progress on the diverse synthetic methodologies of the dihalogenation of alkenes since 2000. Additionally, research trends of this area are also discussed.

Cite this article

He Tianxiong , Zeng Xianghua . Recent Advances in Dihalogenation of Alkenes[J]. Chinese Journal of Organic Chemistry, 2017 , 37(4) : 798 -809 . DOI: 10.6023/cjoc201611041

References

[1] For selected representative examples, please see: (a) Butler, A.; Walker, J. V. Chem. Rev. 1993, 93, 1937.
(b) Gribble, G. W. Acc. Chem. Res. 1998, 31, 141.
(c) Gribble, G. W. Chemosphere 2003, 52, 289.
[2] (a) Denmark, S. E.; Kuester, W. E.; Burk, M. T. Angew. Chem., Int. Ed. 2012, 51, 10938.
(b) Chen, J.; Zhou, L. Synthesis 2014, 586.
(c) Cheng, Y. A.; Yu, W. Z.; Yeung, Y. Y. Org. Biomol. Chem. 2014, 12, 2333.
(d) Brucks, A. P.; Treitler, D. S.; Liu, S. A.; Snyder, S. A. Synthesis 2013, 1886.
[3] Gilman, H. Organic Chemistry: An Advanced Treatise, Vol. 1, Wiley, New York, 1938, pp. 36~43.
[4] Cresswell, A. J.; Eey, S. T. C.; Denmark, S. E. Angew. Chem., Int. Ed. 2015, 54, 15642.
[5] Ryu, I.; Matsubara, H.; Yasuda, S.; Nakamura, H.; Curran, D. P. J. Am. Chem. Soc. 2002, 124, 12946.
[6] Kavala, V.; Naik, S.; Patel, B. K. J. Org. Chem. 2005, 70, 4267.
[7] Nakamatsu, S.; Toyota, S.; Jones, W.; Toda, F. Chem. Commun. 2005, 41, 3808.
[8] Koshy, E. P.; Zacharias, J.; Pillai, V. N. R. React. Funct. Polym. 2006, 66, 845.
[9] Primerano, P.; Cordaro, M.; Scala, A. Tetrahedron Lett. 2013, 54, 4061.
[10] Kumar, A.; Jamir, L.; Sinha, U. B. Chem. Sci. Trans. 2014, 3, 480.
[11] Shao, L.-X.; Shi, M. Synlett 2006, 1269.
[12] Zheng, Y.-F.; Yu, J.; Yan, G.-B.; Li, X.; Luo, S. Chin. Chem. Lett. 2011, 22, 1195.
[13] Podgorsek, A.; Eissen, M.; Fleckenstein, J.; Stavber, S.; Zupan, M.; Iskra, J. Green Chem. 2009, 11, 120.
[14] Karki, K.; Magolan, J. J. Org. Chem. 2015, 80, 3701.
[15] Song, S.; Li, X.; Sun, X.; Yuan, Y.; Jiao, N. Green Chem. 2015, 17, 3285.
[16] Macharla, A. K.; Nappunni, R. C.; Nama, N. Tetrahedron Lett. 2012, 53, 1401.
[17] Wang, G.-W.; Gao, J. Green Chem. 2012, 14, 1125.
[18] Das, P. J.; Sarkar, S. Indian J. Chem. 2013, 52B, 802.
[19] Wang, Y.; Wang, J.; Xiong, Y.; Liu, Z.-Q. Tetrahedron Lett. 2014, 55, 2734.
[20] Zhu, M.; Lin, S.; Zhao, G.-L.; Sun, J.; Córdova, A. Tetrahedron Lett. 2010, 51, 2708.
[21] Xue, H.; Tan, H.; Wei, D.; Wei, Y.; Lin, S.; Liang, F.; Zhao, B. Org. Biomol. Chem. 2013, 11, 5382.
[22] Stodulski, M.; Goetzinger, A.; Kohlhepp, S. V.; Gulder, T. Chem. Commun. 2014, 50, 3435.
[23] Hernández-Torres, G.; Tan, B.; Barbas III, C. F. Org. Lett. 2012, 14, 1858.
[24] Hu, D. X.; Shibuya, G. M.; Burns, N. Z. J. Am. Chem. Soc. 2013, 135, 12960.
[25] Landry, M. L.; Hu, D. X.; Shibuya, G. M.; Burns, N. Z. J. Am. Chem. Soc. 2016, 138, 5150.
[26] Yu, T.-Y.; Wang, Y.; Hu, X.-Q.; Xu, P.-F. Chem. Commun. 2014, 50, 7817.
[27] Yu, T.-Y.; Wei, H.; Luo, Y.-C.; Wang, Y.; Wang, Z.-Y.; Xu, P.-F. J. Org. Chem. 2016, 81, 2730.
[28] Iskra, J.; Stavber, S.; Zupan, M. Chem. Commun. 2003, 39, 2496.
[29] Snyder, S. A.; Tang, Z.-Y.; Gupta, R. J. Am. Chem. Soc. 2009, 131, 5744.
[30] Poutsma, M. L. Science 1967, 157, 997.
[31] Liu, X.; Wang, L.; Zou, J. Chin. J. Chem. 2011, 29, 2097.
[32] Kitamura, K.; Tazawa, Y.; Morshed, M. H.; Kobayashi, S. Synthesis 2012, 44, 1159.
[33] Ren, J.; Tong, R. Org. Biomol. Chem. 2013, 11, 4312.
[34] Swamy, P.; Reddy, M. M.; Kumar, M. A.; Naresh, M.; Narender, N. Synthesis 2014, 46, 251.
[35] Kamada, Y.; Kitamura, Y.; Tanaka, T.; Yoshimitsu, T. Org. Biomol. Chem. 2013, 11, 1598.
[36] Egami, H.; Yoneda, T.; Uku, M.; Ide, T.; Kawato, Y.; Hamashima, Y. J. Org. Chem. 2016, 81, 4020.
[37] Nicolaou, K. C.; Simmons, N. L.; Ying, Y.; Heretsch, P. M.; Chen, J. S. J. Am. Chem. Soc. 2011, 133, 8134.
[38] Yu, T.-Y.; Wang, Y.; Xu, P.-F. Chem. Eur. J. 2014, 20, 98.
[39] Cresswell, A. J.; Eey S. T.-C.; Denmark, S. E. Nat. Chem. 2015, 7, 146.
[40] Zeng, X.; Gong, C.; Zhang, J.; Xie, J. RSC Adv. 2016, 6, 85182.
[41] Zeng, X.; Gong, C.; Zhang, J.; Xie, J. New J. Chem. 2016, 40, 7866.
[42] Bucher, C.; Deans, R. M.; Burns, N. Z. J. Am. Chem. Soc. 2015, 137, 12784.
[43] Huang, W.-S.; Chen, L.; Zheng, Z.-J.; Yang, K.-F.; Xu, Z.; Cui, Y.-M.; Xu, L.-W. Org. Biomol. Chem. 2016, 14, 7927.
[44] For an indirect method, see: Olah, G. A.; Welch, J. T.; Vankar, Y. D.; Nojima, M.; Kerekes, I.; Olah, J. A. J. Org. Chem. 1979, 44, 3872.
[45] Molnár, I. G.; Gilmour, R. J. Am. Chem. Soc. 2016, 138, 5004.
[46] Banik, S. M.; Medley, J. W.; Jacobsen, E. N. J. Am. Chem. Soc. 2016, 138, 5000.
[47] Banik, S. M.; Medley, J. W.; Jacobsen, E. N. Science 2016, 353, 51.

Outlines

/