Reviews

Development of Transition-Metal-Catalyzed C(sp2)-H Functionalization of Arenes with Diazo Compounds

  • Liu Lu ,
  • Zhang Junliang
Expand
  • Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241

Received date: 2017-02-16

  Revised date: 2017-03-10

  Online published: 2017-03-14

Supported by

Project supported by the Shanghai Pujiang Program (No. 14PJ1403100), the National Basic Research Program of China (973 Program, No. 2015CB856600), the National Natural Science Foundation of China (Nos. 21372084, 21425205, 21572065), and the Changjiang Scholars and Innovative Research Team in University.

Abstract

C-H bond functionalization has been one of the most important subject in chemistry. How to control the site selectivity of C-H bond is the key issue and remain challenge. Transition-metal-catalyzed organic tranformation of diazo compounds, such as X-H (X=O, N, S, etc.) insertion, cyclopropanation, cross-coupling reactions and C(sp3)-H functionalization, have been well established, whereas the C(sp2)-H functionalization using diazo compounds is less developed. This review will summarize the progress in transition-metal-catalyzed C(sp2)-H functionalization of arenes with diazo compounds. To realize the site selectivity, two strategies are utilized. One is directed C-H activation, which gives the ortho-selective C-H functionalization products. The other is undirected approach, which normally exhibits para-selectivity. In order to understand these reactions, the mechanisms for selected examples are also provided.

Cite this article

Liu Lu , Zhang Junliang . Development of Transition-Metal-Catalyzed C(sp2)-H Functionalization of Arenes with Diazo Compounds[J]. Chinese Journal of Organic Chemistry, 2017 , 37(5) : 1117 -1126 . DOI: 10.6023/cjoc201702020

References

[1] (a) Dyker, G. Handbook of C-H Transformations, Applications in Organic Synthesis, Wiley-VCH, Weinheim, 2005.
(b) Jones, W; Fehe, F. Acc. Chem. Res. 1989, 22, 91.
(c) Labinger, J. A.; Bercaw, J. E. Nature 2002, 417, 507.
(d) Godula, K.; Sames, D. Science 2006, 312, 67.
(e) Bergman, R. G. Nature 2007, 446, 391.
(f) Yu, J.-Q.; Ding, K.-L. Acta Chim. Sinica 2015, 73, 1223 (in Chinese). (余金权, 丁奎岭, 化学学报, 2015, 73, 1223.)
(g) Liao, G.; Shi, B.-F. Acta Chim. Sinica 2015, 73, 1283 (in Chinese). (廖港, 史炳锋, 化学学报, 2015, 73, 1283.)
(h) Shang, X.-J.; Liu, Z.-Q. Acta Chim. Sinica 2015, 73, 1275 (in Chinese). (尚筱洁, 柳忠全, 化学学报, 2015, 73, 1275.)
(i) He, J.-Q.; Lou, S. J.; Xu, D. Q. Chin. J. Org. Chem. 2016, 36, 1218 (in Chinese). (何将旗, 娄绍杰, 许丹倩, 有机化学, 2016, 36, 1218.)
[2] (a) Liu, L.; Zhang, J. Chem. Soc. Rev. 2016, 45, 506.
(b) Fructos, M. R.; Díaz-Requejo, M. M.; Pérez, P. J. Chem. Commun. 2016, 52, 7326.
(c) Wei, F.; Song, C.; Ma, Y.; Zhou, L.; Tung, C.-H.; Xu, Z. Sci. Bull. 2015, 60, 1479.
(d) Ford, A.; Miel, H.; Ring, A.; Slattery, C. N.; Maguire, A. R.; Mckervey, M. A. Chem. Rev. 2015, 115, 9981.
(e) Davies, H. M. L.; Lian, Y.-J. Acc. Chem. Res. 2012, 45, 923.
(f) Zhang, Z.; Wang, J. Tetrahedron 2008, 64, 6577.
(g) Maas, G. Chem. Soc. Rev. 2004, 33, 183.
(h) Lebel, H.; Marcoux, J.-F.; Molinaro, C.; Charette, A. B. Chem. Rev. 2003, 103, 977.
(i) Doyle, M. P.; McKervey, M. A. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds, Wiley, New York, 1998.
(j) Doyle, M. P.; Forbes, D. C. Chem. Rev. 1998, 98, 911.
(k) Doyle, M. P.; Duffy, R.; Ratnikov, M.; Zhou, L. Chem. Rev. 2010, 110, 704.
[3] (a) Davies, H. M. L.; Manning, J.-R. Nature 2008, 451, 417.
(b) Díaz-Requejo, M. M.; Pérez, P. J. Chem. Rev. 2008, 108, 3379.
(c) Liu, Z.; Wang, J. J. Org. Chem. 2013, 78, 10024.
[4] Silberrad, O.; Roy, C. S. J. Chem. Soc. 1906, 179.
[5] (a) Davies, H. M. L.; Morton, D. Chem. Soc. Rev. 2011, 40, 1857.
(b) Liao, K.; Negretti, S.; Musaev, D. G.; Bacsa, J.; Davies, H. M. L. Nature 2016, 533, 230.
[6] http: //ibond. nankai. edu. cn.
[7] (a) Cheng, C.; Hartwig, J. F. Chem. Rev. 2015, 115, 8946.
(b) Song, G.; Li, X. Acc. Chem. Res. 2015, 48, 1007.
(c) Ye, B.; Cramer, N. Acc. Chem. Res. 2015, 48, 1308.
(d) Shin, K.; Kim, H.; Chang, S. Acc. Chem. Res. 2015, 48, 1040.
(e) Daugulis, O.; Roane, J.; Tran, L. D. Acc. Chem. Res. 2015, 48, 1053.
(f) Segawa, Y.; Maekawa, T.; Itami, K. Angew. Chem., Int. Ed. 2015, 54, 66.
(g) Girard, S. A.; Knauber, T.; Li, C.-J. Angew. Chem., Int. Ed. 2014, 53, 74.
(h) Gao, K.; Yoshikai, N. Acc. Chem. Res. 2014, 47, 1208.
(i) Rouquet, G.; Chatani, N. Angew. Chem., Int. Ed. 2013, 52, 11726.
(j) Wencel-Delord, J.; Glorius, F. Nat. Chem. 2013, 5, 369.
(k) Arockiam, P. B.; Bruneau, C.; Dixneuf, P. H. Chem. Rev. 2012, 112, 5879.
(l) Li, B.-J.; Shi, Z.-J. Chem. Soc. Rev. 2012, 41, 5588.
(m) Yeung, C. S.; Dong, V. M. Chem. Rev. 2011, 111, 1215.
(n) Engle, K. M.; Mei, T.-S.; Wasa, M.; Yu, J.-Q. Acc. Chem. Res. 2011, 45, 788;
[8] Chan, W.-W.; Lo, S.-F.; Zhou, Z.; Yu, W.-Y. J. Am. Chem. Soc. 2012, 134, 13565.
[9] (a) Hyster, T. K.; Ruhl, K. E.; Rovis, T. J. Am. Chem. Soc. 2013, 135, 5364.
(b) Shi, Z.; Koester, D. C.; Boultadakis-Arapinis, M.; Glorius, F. J. Am. Chem. Soc. 2013, 135, 12204.
(c) Hu, F.; Xia, Y.; Ye, F.; Liu, Z.; Ma, C.; Zhang, Y.; Wang, J. Angew. Chem., Int. Ed. 2014, 53, 1364.
(d) Yu, S.; Liu, S.; Lan, Y.; Wan, B.; Li, X. J. Am. Chem. Soc. 2015, 137, 1623.
(e) Yu, X.; Yu, S.; Xiao, J.; Wan, B.; Li, X. J. Org. Chem. 2013, 78, 5444.
(f) Cheng, Y.; Bolm, C. Angew. Chem., Int. Ed. 2015, 54, 12349.
(g) Cui, S.; Zhang, Y.; Wang, D.; Wu, Q. Chem. Sci. 2013, 4, 3912.
(h) Dateer, R. B.; Chang, S. Org. Lett. 2016, 18, 68.
(i) Liang, Y.; Yu, K.; Li, B.; Xu, S.; Song, H.; Wang, B. Chem. Commun. 2014, 50, 6130.
(j) Zhou, T.; Li, B.; Wang, B. Chem. Commun. 2016, 52, 14117.
(k) Zhou, J.; Shi, J.; Liu, X.; Jia, J.; Song, H.; Xu, H. E.; Yi, W. Chem. Commun. 2015, 51, 5868.
(l) Son, J.-Y.; Kim, S.; Jeon, W. H.; Lee, P. H. Org. Lett. 2015, 17, 2518.
(m) Bai, P.; Huang, X.-F.; Xu, G.-D.; Huang, Z.-Z. Org. Lett. 2016, 18, 3058.
(n) Song, C.; Yang, C.; Zhang, F.; Wang, J.; Zhu, J. Org. Lett. 2016, 18, 4510.
[10] Ye, B.; Cramer, N. Angew. Chem., Int. Ed. 2014, 53, 7896.
[11] (a) Phatake, R. S.; Patel, P.; Ramana, C. V. Org. Lett. 2016, 18, 292.
(b) Phatake, R. S.; Patel, P.; Ramana, C. V. Org. Lett. 2016, 18, 2828.
(c) Patel, P.; Borah, G. Chem. Commun. 2017, 53, 443.
[12] (a) Zhao, D.; Kim, J. H.; Stegemann, L.; Strassert, C. A.; Glorius, F. Angew. Chem., Int. Ed. 2015, 54, 4508.
(b) Kim, J. H.; Greßies, S.; Glorius, F. Angew. Chem., Int. Ed. 2016, 55, 5577.
[13] Li, J.; Tang, M.; Zang, L.; Zhang, X.; Zhang, Z.; Ackermann, L. Org. Lett. 2016, 18, 2742.
[14] Yu, Z.; Li, Y.; Shi, J.; Ma, B.; Liu, L.; Zhang, J. Angew. Chem., Int. Ed. 2016, 55, 14807.
[15] Hartwig, J. F.; Larsen, M. A. ACS Cent. Sci. 2016, 2, 281.
[16] Yates, P. J. Am. Chem. Soc. 1952, 74, 5376.
[17] (a) Gillingham, D.; Fei, N. Chem. Soc. Rev. 2013, 42, 4918.
(b) Guo, X.; Hu, W. Acc. Chem. Res. 2013, 46, 2427.
(c) Zhu, S.-F.; Zhou, Q.-L. Acc. Chem. Res. 2012, 45, 1365.
(d) Miller, D. J.; Moody, C. J. Tetrahedron 1995, 51, 10811.
[18] Yu, Z.; Ma, B.; Chen, M.; Wu, H.-H.; Liu, L.; Zhang, J. J. Am. Chem. Soc. 2014, 136, 6904.
[19] Fan, H.; Zhang, Z.; Li, X.; Zhao, J.; Gao, J.; Zhu, S. Tetrahedron 2013, 69, 1978.
[20] Tayama, E.; Yanaki, T.; Iwamoto, H.; Hasegawa, E. Eur. J. Org. Chem. 2010, 6719.
[21] Tayama, E.; Ishikawa, M.; Iwamoto, H.; Hasegawa, E. Tetrahedron Lett. 2012, 53, 5159.
[22] Xi, Y.; Su, Y.; Yu, Z.; Dong, B.; McClain, E. J.; Lan, Y.; Shi, X. Angew. Chem., Int. Ed. 2014, 53, 9817.
[23] Liu, Y.; Yu, Z.; Zhang, J. Z.; Liu, L, Xia, F.; Zhang, J. Chem. Sci. 2016, 7, 1988.
[24] Liu, Y.; Yu, Z.; Luo, Z.; Zhang, J. Z.; Liu, L, Xia, F. J. Phys. Chem. A 2016, 120, 1925.
[25] Yang, J.-M.; Cai, Y.; Zhu, S.-F.; Zhou, Q.-L. Org. Biomol. Chem. 2016, 14, 5516.
[26] Magar, K. B. S.; Edison, T. N. J. I.; Lee, Y. R. Org. Biomol. Chem. 2016, 14, 7313.
[27] Yu, Z.; Qiu, H.; Liu, L.; Zhang, J. Chem. Commun. 2016, 52, 2257.
[28] Jia, S.; Lei, Y.; Song, L.; Reddy, A. G. K.; Xing, D.; Hu, W. Adv. Synth. Catal. 2017, 359, 58.
[29] Ma, B.; Wu, Z.; Huang, B.; Liu, L.; Zhang, J. Chem. Commun. 2016, 52, 9351.
[30] Jia, S.; Xing, D.; Zhang, D.; Hu, W. Angew. Chem., Int. Ed. 2014, 53, 13098.
[31] Xu, B.; Li, M.-L.; Zuo, X.-D.; Zhu, S.-F.; Zhou, Q.-L. J. Am. Chem. Soc. 2015, 137, 8700.
[32] Cao, Z.; Zhao, Y.; Zhou, J. Chem. Commun. 2016, 52, 2537.
[33] Rosenfeld, M. J.; Shankar, B. K.; Shechter, H. J. Org. Chem. 1988, 53, 2699.
[34] Mbuvi, H. M.; Woo, L. K. Organometallics 2008, 27, 637.
[35] Best, D.; Burns, D. J.; Lam, H. W. Angew. Chem., Int. Ed. 2015, 54, 7410.
[36] Best, D.; Jean, M.; van de Weghe, P. J. Org. Chem. 2016, 81, 7760.
[37] Fructos, M. R.; Belderrain, T. R.; de Frémont, P.; Scott, N. M.; Nolan, S. P.; Díaz-Requejo, M. M.; Pérez, P. J. Angew. Chem., Int. Ed. 2005, 44, 5284.
[38] Rivilla, I.; Gõmez-Emeterio, B. P.; Fructos, M. R.; Díaz-Requejo, M. M.; Perez, P. J. Organometallics 2011, 30, 2855.
[39] Conde, A.; Sabenya, G.; Rodríguez, M.; Postils, V.; Luis, J. S.; Díaz-Requejo, M. M.; Costas, M.; Pérez, P. J. Angew. Chem., Int. Ed. 2016, 55, 6530.
[40] Ma, B.; Chu, Z.; Huang, B.; Liu, Z.; Liu, L.; Zhang, J. Angew. Chem., Int. Ed. 2017, 56, 2749.

Outlines

/