ARTICLE

Selective S-Allylic Alkylation of 2-Thiopyrimidine with Morita-Baylis-Hillman Carbonates

  • Yang Jingya ,
  • Li Nana ,
  • Zhou Hongyan ,
  • Li Tianyuan ,
  • Xie Dongtai ,
  • Li Zheng
Expand
  • a College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070;
    b College of Science, Gansu Agricultural University, Lanzhou 730070

Received date: 2017-02-14

  Revised date: 2017-03-24

  Online published: 2017-04-13

Supported by

Project supported by the National Nature Science Foundation of China (Nos. 21362034, 21462038) and the Research Fund for the Doctoral Program of Higher Education of China (No. 20136203120005).

Abstract

The S-allylic alkylation of 2-thiopyrimidine with Morita-Baylis-Hillman (MBH) carbonates catalyzed by 1,4-diazabicyclo[2.2.2]octane (DABCO) has been developed. A variety of Morita-Baylis-Hillman (MBH) carbonates reacted with 2-thiopyrimidine and gave the desired S-allylic alkylated products in 55%~99% yields with exclusive chemoselectivity and excellent regioselectivity. The mild reaction conditions, short reaction time, and broad substrate scope make this method very practical.

Cite this article

Yang Jingya , Li Nana , Zhou Hongyan , Li Tianyuan , Xie Dongtai , Li Zheng . Selective S-Allylic Alkylation of 2-Thiopyrimidine with Morita-Baylis-Hillman Carbonates[J]. Chinese Journal of Organic Chemistry, 2017 , 37(8) : 2078 -2085 . DOI: 10.6023/cjoc201702015

References

[1] For selected examples, see:(a) Johnson, M. G.; Gribble, Jr., M. W.; Houze, J. B.; Paras, N. A. Org. Lett. 2014, 16, 6248.
(b) Charalampou, D. C.; Kourkoumelis, N.; Karanestora, S.; Hadjiarapoglou, L. P.; Dokorou, V.; Skoulika, S.; Owczarzak, A.; Kubicki, M.; Hadjikakou, S. K. Inorg. Chem. 2014, 53, 8322.
[2] For selected examples, see:(a) Jorgetto, A. D.; Pereira, S. P.; da Silva, R. I. V.; Saeki, M. J.; Martines, M. A. U.; Pedrosa, V. D.; de Castro, G. R. Acta Chim. Slovaca 2015, 62, 111.
(b) Li, X.; Xie, X.; Deng, S.; Du, G. Corros. Sci. 2015, 92, 136.
[3] For selected examples, see:(a) Abdo, N. Y. M. Acta Chim. Slovava 2015, 62, 168.
(b) Camargo, M. S.; da Silva, M. M.; Correa, R. S.; Vieira, S. D.; Castelli, S.; D'Anessa, I.; De Grandis, R. A.; Varanda, E. A.; Deflon, V. M.; Desideri, A.; Batista, A. A. Metallomics 2016, 8, 179.
(c) Fathalla, O. A. E.-F. M.; Ismail, M. A. H.; Anwar, M. M.; Abouzid, K. A. M.; Ramadan, A. A. K. Med. Chem. Res. 2013, 22, 659.
(d) Elsayed, S. A.; Jean-Claude, B. J.; Butler, I. S.; Mostafa, S. I. J. Mol. Struct. 2012, 1028, 208.
[4] For selected example, see:Luqman, A.; Blair, V. L.; Brammananth, R.; Crellin, P. K.; Coppel, R. L.; Andrews, P. C. Eur. J. Inorg. Chem. 2016, 2738.
[5] For selected example, see:Saundane, A. R.; Mathada, K. N. Monatsh. Chem. 2016, 147, 1291.
[6] For selected example, see:Sondhi, S. M.; Goyal, R. N.; Lahoti, A. M.; Singh, N.; Shukla, R.; Raghubir, R. Biorg. Med. Chem. 2005, 13, 3185.
[7] Khedkar, S. A.; Sun, X.; Rigby, A. C.; Feinberg, M. W. J. Med. Chem. 2015, 58, 1466.
[8] Prachayasittikul, S.; Worachartcheewan, A.; Nantasenamat, C.; Chinworrungsee, M.; Sornsongkhram, N.; Ruchirawat, S.; Prachayasittikul, V. Eur. J. Med. Chem. 2011, 46, 738.
[9] Orzeszko, B.; ?witaj, T.; Jakubowska-Mu?ka, A. B.; Lasek, W.; Orzeszko, A.; Kazimierczuk, Z. Z. Naturforsch., B 2005, 60, 471.
[10] Marysheva, V. V.; Shabanov, P. D. Pharm. Chem. J. 2006, 40, 251.
[11] For selected reviews on MBH adducts, see:(a) Le Bras, J.; Muzart, J. Synthesis 2011, 3581.
(b) Basavaiah, D.; Reddy, B. S.; Badsara, S. S. Chem. Rev. 2010, 110, 5447.
(c) Basavaiah, D.; Rao, A. J.; Satyanarayana, T. Chem. Rev. 2003, 103, 811.
[12] For reviews on MBH adducts involving MBH carbonates, see:(a) Xie, P.; Huang, Y. Org. Biomol. Chem. 2015, 13, 8578.
(b) Liu, T.-Y.; Xie, M.; Chen, Y.-C. Chem. Soc. Rev. 2012, 41, 4101.
[13] For selected examples, see:(a) Zhao, S.; Zhao, Y.-Y.; Lin, J.-B.; Xie, T.; Liang, Y.-M.; Xu, P.-F. Org. Lett. 2015, 17, 3206.
(b) Tong, G.; Zhu, B.; Lee, R.; Yang, W.; Tan, D.; Yang, C.; Han, Z.; Yan, L.; Huang, K.-W.; Jiang, Z. J. Org. Chem. 2013, 78, 5067.
(c) Chen, G.-Y.; Zhong, F.; Lu, Y. Org. Lett. 2012, 14, 3955.
(d) Liu, C.; Tan, B.-X.; Jin, J.-L.; Zhang, Y.-Y.; Dong, N.; Li, X.; Cheng, J.-P. J. Org. Chem. 2011, 76, 5838.
(e) Cui, H.-L.; Huang, J.-R.; Lei, J.; Wang, Z.-F.; Chen, S.; Wu, L.; Chen, Y.-C. Org. Lett. 2010, 12, 720.
(f) Jiang, K.; Peng, J.; Cui, H.-L.; Chen, Y.-C. Chem. Commun. 2009, 3955.
(g) Cui, H.-L.; Peng, J.; Feng, X.; Du, W.; Jiang, K.; Chen, Y.-C. Chem. Eur. J. 2009, 15, 1574.
(h) Jiang, Y.-Q.; Shi, Y.-L.; Shi, M. J. Am. Chem. Soc. 2008, 130, 7202.
(i) van Steenis, D. J. V. C.; Marcelli, T.; Lutz, M.; Spek, A. L.; van Maarseveen, J. H.; Hiemstra, H. Adv. Synth. Catal. 2007, 349, 281.
(j) Cho, C.-W.; Krische, M. J. Angew. Chem., Int. Ed. 2004, 43, 6689.
[14] For selected examples, see:(a) Yao, L.; Wang, C.-J. Adv. Synth. Catal. 2015, 357, 384.
(b) Chen, L.-Y.; Yu, X.-Y.; Chen, J.-R.; Feng, B.; Zhang, H.; Qi, Y.-H.; Xiao, W.-J. Org. Lett. 2015, 17, 1381.
(c) Zhan, G.; Zhou, Q.-Q.; Du, W.; Chen, Y.-C. Synthesis 2014, 3383.
(d) Deng, H.-P.; Wei, Y.; Shi, M. Eur. J. Org. Chem. 2011, 1956.
(e) Huang, J.-R.; Cui, H.-L.; Lei, J.; Sun, X.-H.; Chen, Y.-C. Chem. Commun. 2011, 47, 4784.
(f) Cui, H.-L.; Feng, X.; Peng, J.; Lei, J.; Jiang, K.; Chen, Y.-C. Angew. Chem., Int. Ed. 2009, 48, 5737.
(g) Cho, C.-W.; Kong, J.-R.; Krische, M. J. Org. Lett. 2004, 6, 1337.
[15] For selected examples, see:(a) Hu, Z.; Cui, H.; Jiang, K.; Chen, Y. Sci. China, Ser. B:Chem. 2009, 52, 1309.
(b) Feng, X.; Yuan, Y.-Q.; Cui, H.-L.; Jiang, K.; Chen, Y.-C. Org. Biomol. Chem. 2009, 7, 3660.
(c) Trost, B. M.; Brennan, M. K. Org. Lett. 2007, 9, 3961.
(d) Trost, B. M.; Tsui, H.-C.; Toste, F. D. J. Am. Chem. Soc. 2000, 122, 3534.
[16] For selected examples, see:(a) Hong, L.; Sun, W.; Liu, C.; Zhao, D.; Wang, R. Chem. Commun. 2010, 46, 2856.
(b) Sun, W.; Hong, L.; Liu, C.; Wang, R. Org. Lett. 2010, 12, 3914.
[17] (a) Lin, A.; Mao, H.; Zhu, X.; Ge, H.; Tan, R.; Zhu, C.; Cheng, Y. Adv. Synth. Catal. 2011, 353, 3301.
(b) Liu, X.-W.; Han, W.-Y.; Liu, X.-L.; Zhou, Y.; Zhang, X.-M.; Yuan, W.-C. Tetrahedron 2014, 70, 9191.
[18] (a) Karnakar, K.; Ramesh, K.; Murthy, S. N.; Nageswar, Y. V. D. Helv. Chim. Acta 2013, 96, 2276.
(b) Han, E.-G.; Kim, H. J.; Lee, K.-J. Tetrahedron 2009, 65, 9616.
(c) Das, B.; Chowdhury, N.; Damodar, K.; Banerjee, J. Chem. Pharm. Bull. 2007, 55, 1274.
(d) Santhoshi, A.; Mahendar, B.; Mattapally, S.; Sadhu, P. S.; Banerjee, S. K.; Rao, J. V. Bioorg. Med. Chem. Lett. 2014, 24, 1952.
[19] (a) Erray, I.; Oble, J.; Poli, G.; Rezgui, F. J. Sulfur Chem. 2014, 35, 128.
(b) Baioui, N.; Abidi, A.; Rezgui, F. Helv. Chim. Acta 2016, 99, 704.
[20] CCDC 1517223 contains the supplementary crystallographic data for compound 3f. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
[21] Feng, J.; Lu, X.; Kong, A.; Han, X. Tetrahedron 2007, 63, 6035.

Outlines

/