Chinese Journal of Organic Chemistry >
Progress in Homogeneous Catalytic Hydrogenation of CO2
Received date: 2017-02-25
Revised date: 2017-03-30
Online published: 2017-04-21
Supported by
Project supported by the National Natural Science Foundation of China (No. 21476060) and the Natural Science Foundation of Hebei Province (No. B2014205049).
In recent years, due to the rising of sustainable development strategies and concerns about global warming, chemists have pay more attention to the application of carbon dioxide (CO2) as a resource for chemical synthesis. Thereinto, in the research of the using of CO2, catalytic hydrogenation of CO2 is one of the momentous means for the utilization of CO2. The homogeneous catalytic reaction has the advantage of mild reaction condition, high activity and easy regulation of the catalytic system and so forth, so the homogeneous catalytic hydrogenation CO2 becomes to be a hot topic in utilization of CO2 resource, especially in the catalytic production of formic acid, formaldehyde, methanol and amine derivatives, it has extensive application prospects. In this paper, the recent progress in the research of homogeneously hydrogenated CO2 catalyzed by organometallic complexes is reviewed. It included that types and structures, activity and selectivity of homogeneous catalysts for the catalytic production of formic acid, formaldehyde, mathanol and as C1 synthons, and the advance in the reaction mechanism of homogeneous catalytic hydrogenation of CO2.
Li Yong , Wang Zheng , Liu Qingbin . Progress in Homogeneous Catalytic Hydrogenation of CO2[J]. Chinese Journal of Organic Chemistry, 2017 , 37(8) : 1978 -1990 . DOI: 10.6023/cjoc201702038
[1] (a) Thomas, J. M.; Harris, K. D. M. Energy Environ. Sci. 2016, 9, 687.
(b) Klankermayer, J.; Wesselbaum, S.; Beydoun, K.; Leitner, W. Angew. Chem., Int. Ed. 2016, 55, 7296.
[2] Otto, A.; Grube, T.; Schiebahna, S.; Stoltenab, D. Energy Environ. Sci. 2015, 8, 3283.
[3] (a) Aresta, M.; Dibenedetto, A.; Angelini, A. Chem. Rev. 2014, 114, 1709.
(b) Metcalfe, I. S.; North, M.; Pasquale, R.; Thursfield, A. Energy Environ. Sci. 2010, 3, 212.
(c) North, M.; Wang, B.; Young, C. Energy Environ. Sci. 2011, 4, 4163.
(d) Chapman, A. M.; Keyworth, C.; Kember, M. R.; Lennox, A. J. J.; Williams, C. K. ACS Catal. 2015, 5, 1581.
(e) Darensbourg, D. J.; Wilson, S. J. Green Chem. 2012, 14, 2665.
(f) Ellis, W. C.; Jung, Y.; Mulzer, M.; Di Girolamo, R.; Lobkovsky, E. B.; Coates, G. W. Chem. Sci. 2014, 5, 4004.
(g) Martnez, J.; Castro-Osma, J. A.; Earlam, A.; Alonso-Moreno, C.; Otero, A.; Lara-Snchez, A.; North, M.; Rodrguez-Diguez, A. Chem.-Eur. J. 2015, 21, 9850.
(h) Comerford, J. W.; Ingram, I. D. V.; North, M.; Wu, X. Green Chem. 2015, 17, 1966.
(i) Martn, C.; Fiorani, G.; Kleij, A. W. ACS Catal. 2015, 5, 1353.
(j) Buonerba, A.; De Nisi, A.; Grassi, A.; Milione, S.; Capacchione, C.; Vagin, S.; Rieger, B. Catal. Sci. Technol. 2015, 5, 118.
(k) Mikkelsen, M.; Jørgensen, M.; Krebs, F. C. Energy Environ. Sci. 2010, 3, 43.
[4] (a) Bitter, J. H.; Seshan, K.; Lercher, J. A. J. Catal. 1997, 171, 279.
(b) Gomes, C. D. N.; Jacquet, O.; Villiers, C.; Thury, P.; Ephritikhine, M.; Cantat, T. Angew. Chem., Int. Ed. 2012, 51, 187.
[5] Li, Y.-N.; Ma, R.; He, L,-N.; Diao, Z.-F. Catal. Sci. Technol. 2014, 4, 1498.
[6] Reutemann, W.; Kieczka H. In UllmannÏs Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2000.
[7] Farlow, M. W.; Adkins, H. J. Am. Chem. Soc. 1935, 57, 2222.
[8] Hao, C.-Y.; Wang, S.-P.; Li, M.-S.; Kang, L.-Q.; Ma, X.-B. Catal. Today 2011, 160, 184.
[9] (a) Jessop, P. G.; Ikariya, T.; Noyori, R. Chem. Rev. 1995, 95, 259.
(b) Leitner, W. Angew. Chem., Int. Ed. Engl. 1995, 34, 2207.
(c) Jessop, P. G.; Joo, F.; Tai, C.-C. Coord. Chem. Rev. 2004, 248, 2425.
(d) Federsel, C.; Jackstell, R.; Beller, M. Angew. Chem., Int. Ed. 2010, 49, 6254.
[10] Inoue, Y.; Izumida, H.; Sasaki, Y.; Hashimoto, H. Chem. Lett. 1976, 863.
[11] Graf, E.; Leitner, W. J. Chem. Soc., Chem. Commun. 1992, 4.
[12] Gassner, F.; Leitner, W. J. Chem. Soc., Chem. Commun. 1993, 1465.
[13] Jessop, P. G.; Ikariya, T.; Noyori, R. Nature 1994, 368, 231.
[14] (a) Himeda, Y.; Onozawa-Komatsuzaki, N.; Sugihara, H.; Arakawa, H.; Kasuga, K. Organometallics 2004, 23, 1480.
(b) Himeda, Y.; Onozawa-Komatsuzaki, N.; Sugihara, H.; Kasuga, K. Organometallics 2007, 26, 702.
[15] Tanaka, R.; Yamashita, M.; Nozaki, K. J. Am. Chem. Soc. 2009, 131, 14168.
[16] Azua, A.; Sanz, S.; Peris, E. Chem.-Eur. J. 2011, 17, 3963.
[17] (a) Filonenko, G. A.; Putten, R. V.; Schulpen, E. N.; Hensen, E. J. M.; Pidko, E. A. ChemCatChem 2014, 6, 1526.
(b) Filonenko, G. A.; Conley, M. P.; Copéret, C.; Lutz, M.; Hensen, E. J. M.; Pidko, E. A. ACS Catal. 2013, 3, 2522.
[18] Tai, C.-C.; Chang, T.; Roller, B.; Jessop, P. G. Inorg. Chem. 2003, 42, 7340.
[19] (a) Federsel, C.; Boddien, A.; Jackstell, R.; Jennerjahn, R.; Dyson, P. J.; Scopelliti, R.; Laurenczy, G.; Beller, M. Angew. Chem., Int. Ed. 2010, 49, 9777.
(b) Ziebart, C.; Federsel, C.; Anbarasan, P.; Jackstell, R.; Baumann, W.; Spannenberg, A.; Beller, M. J. Am. Chem. Soc. 2012, 134, 20701.
[20] Langer, R.; Diskin-Posner, Y.; Leitus, G.; Shimon, L. J. W.; Ben-David, Y.; Milstein, D. Angew. Chem., Int. Ed. 2011, 50, 9948.
[21] Federsel, C.; Ziebart, C.; Jackstell, R.; Baumann, W.; Beller, M. Chem.-Eur. J. 2012, 18, 72.
[22] Badiei, Y. M.; Wang, W.-H.; Hull, J. F.; Szalda, D. J.; Muckerman, J. T.; Himeda, Y.; Fujita, E. Inorg. Chem. 2013, 52, 12576.
[23] Jeletic, M. S.; Mock, M. T.; Appel, A. M.; Linehan, J. C. J. Am. Chem. Soc. 2013, 135, 11533.
[24] Taqui Khan, M. M.; Halligudi, S. B.; Rao, N. N.; Shukla, S. J. Mol. Catal. 1989, 51, 161.
[25] Hayashi, H.; Ogo, S.; Fukuzumi, S. Chem. Commun. 2004, 2714.
[26] Zhao, G.; Joó, F. Catal. Commun. 2011, 14, 74.
[27] Moret, S.; Dyson, P. J.; Laurenczy, G. Nat. Commun. 2014, 5, 4017.
[28] Tsai, J. C.; Nicholas, M. J. Am. Chem. Soc. 1992, 114, 5117;
[29] Wesselbaum, S.; Hintermair, U.; Leitner, W. Angew. Chem., Int. Ed. 2012, 51, 8585.
[30] Mondal, B.; Neese, F.; Ye, S.-F. Inorg. Chem. 2015, 54, 7192.
[31] (a) Zhang, Y.-P.; Fei, J.-H.; Yu, Y.-M.; Zheng, X.-M. Catal. Lett. 2004, 93, 231.
(b) Zhang, Y.-P.; Fei, J.-H.; Yu, Y.-M.; Zheng, X.-M. Catal. Commun. 2004, 5, 643.
[32] Yu, Y.-M.; Zhang, Y.-P.; Fei, J.-H.; Zheng, X.-M. Chin. J. Chem. 2005, 23, 977.
[33] Yu, Y.-M.; Fei, J.-H.; Zhang, Y.-P.; Zheng, X.-M. Chin. Chem. Lett. 2006, 17, 1097.
[34] Xu, Z.; McNamara, N. D.; Neumann, G. T.; Schneider, W. F.; Hicks, J. C. ChemCatChem 2013, 5, 1769.
[35] Arpe, H.-J. Industrial Organic Chemistry, Vol. 5, Wiley-VCH, Weinheim, 2010.
[36] Jessop, P. G.; Hsiao, Y.; Ikariya, T.; Noyori, R. J. Chem. Soc., Chem. Commun. 1995, 707.
[37] Krçcher, O.; Kçppel, R. A.; Baiker, A. Chem. Commun. 1997, 453.
[38] Yadav, M.; Linehan, J. C.; Karkamkar, A. J.; Eide, E. V. D.; Heldebrant, D. J. Inorg. Chem. 2014, 53, 9849.
[39] Evans, G. O.; Newell, C. J. Inorg. Chim. Acta 1978, 31, L387.
[40] Federsel, C.; Boddien, A.; Jackstell, R.; Jennerjahn, R.; Dyson, P. J.; Scopelliti, R.; Laurenczy, G.; Beller, M. Angew. Chem., Int. Ed. 2010, 49, 9777.
[41] Darensbourg, D. J.; Ovalles, C. J. Am. Chem. Soc. 1984, 106, 3750.
[42] Chen, Y.- Z.; Lau, C. P. J. Mol. Catal. A 1995, 101, 33.
[43] Huff, C. A.; Sanford, M. S. J. Am. Chem. Soc. 2011, 133, 18122
[44] Jessop, P. G.; Ikariya, T.; Noyori, R. Chem. Rev. 1995, 95, 259.
[45] Jessop, P. G. In The Handbook of Homogeneous Hydrogenation Eds.:Vries, J. G. D.; Elsevier, C. J., Wiley-VCH, Weinheim, 2007, p. 489.
[46] Schmid, L.; Schneider, M. S.; Engel, D.; Baiker, A. Catal. Lett. 2003, 88, 105.
[47] Farlow, M. W.; Adkins, H. J. Am. Chem. Soc. 1935, 57, 2222.
[48] Liu, J.-L.; Guo. C.-K.; Zhang, Z.-F.; Jiang, T.; Liu, H.-Z.; Song. J.-L.; Fan, H.-L.; Han, B.-X. Chem. Commun. 2010, 46, 5770.
[49] Schaub, T.; Paciello, R.; Pazicky, M.; Fachinetti, G.; Preti, D. WO 2013014160, 2013[Chem. Abstr. 2013, 158, 218798].
[50] Schaub, T.; Paciello, R.; Pazicky, M.; Fachinetti, G.; Preti, D. US 20130102807, 2013[Chem. Abstr. 2013, 158, 576492].
[51] Haynes, P.; Slaugh, L. H.; Kohnle, J. F. Tetrahedron Lett. 1970, 365.
[52] Jessop, P. G.; Hsiao, Y.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1994, 116, 8851.
[53] Krçcher, O.; Kçppel, R. A.; Baiker, A. Chem. Commun. 1997, 453.
[54] Zhang, L.; Han, Z.; Zhao, X.; Wang, Z.; Ding, K. Angew. Chem., Int. Ed. 2015, 54, 6186.
[55] Reuss, G.; Disteldorf, W.; Gamer, A. A. O. Hilt in Ullmanňs Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2000.
[56] Wang, Z.-C.; Dietl, N.; Kretschmer, R.; Ma, J.-B.; Weiske, T.; Schlangen, M.; Schwarz, H. Angew. Chem., Int. Ed. 2012, 51, 3703.
[57] Lee, D.-K.; Kim, D.-S.; Kim, S.-W. Appl. Organomet. Chem. 2001, 15, 148.
[58] Gambarotta, S.; Strologo, S.; Floriani, C.; Chiesi-Villa, A.; Guastini, C. J. Am. Chem. Soc. 1985, 107, 6278.
[59] (a) Tso, C. C.; Cutler, A. R. J. Am. Chem. Soc. 1986, 108, 6069.
(b) Steffey, B. D.; Vites, J. C.; Cutler, A. R.; Organometallics 1991, 10, 3432.
[60] Bontemps, S.; Vendier, L.; Sabo-Etienne, S. J. Am. Chem. Soc. 2014, 136, 4419.
[61] Heim, L. E.; Schlorer, N. E.; Choi, J. H.; Prechtl, M. H. Nat. Commun. 2014, 5, 3621.
[62] Bertau, M.; Offermanns, H.; Plass, L.; Schmidt, F.; Wernicke, H.-J. Methanol:The Basic Chemical and Energy Feedstock of the Future Springer, Amsterdam, 2013.
[63] Arpe, H.-J. Industrial Organic Chemistry, Vol. 5, Wiley-VCH, Weinheim, 2010.
[64] Baerns, M.; Behr, A.; Brehm, A.; Gmehling, J.; Hofmann, H.; Onken, U.; Renken, A. Technische Chemie, Wiley-VCH, Weinheim, 2006.
[65] Asinger, F. Methanol——Chemie- und Energierohstoff, Springer, Heidelberg, 1986(in German).
[66] (a) Olah, G. A. Angew. Chem., Int. Ed. 2005, 44, 2636.
(b) Olah, G. A.; Goeppert, A.; Prakash, G. K. S. Beyond Oil and Gas:The Methanol Economy, Wiley-VCH, Weinheim, 2006.
[67] Markewitz, P.; Kuckshinrichs, W.; Leitner, W.; Linssen, J.; Zapp, P.; Bongartz, R.; Schreiber, A.; Muller, T. E. Energy Environ. Sci. 2012, 5, 7281.
[68] Davies, P.; Snowdon, F.; Bridger, G. W.; Hughes, D. O.; Young, P. W. DE 1241429, 1963.
[69] Lim, H.-W.; Park, M.-J.; Kang, S.-H.; Chae, H.-J.; Bae, J. W.; Jun, K.-W. Ind. Eng. Chem. Res. 2009, 48, 10448.
[70] Saito, M.; Fujitani, T.; Takeuchi, M.; Watanabe, T. Appl. Catal. A 1996, 138, 311.
[71] Koenig, P.; Koenig, P. D. US 5631302, 1997[Chem. Abstr. 1995, 124, 33563].
[72] Behrens, M.; Stud, F.; Kasatkin, I.; Kühl, S.; Hävecker, M.; Abild-Pedersen, F.; Zande, S.; Girgsdies, F.; Kurr, P.; Kniep, B.-L.; Tovar, M.; Fischer, R. W.; Nørskov, J. K.; Schlögl, R. Science 2012, 336, 893.
[73] Studt, F.; Behrens, M.; Kunkes, E. L.; Thomas, N.; Zander, S.; Tarasov, A.; Schuman, J.; Frei, E.; Varley, J. B.; AbildPedersen, F.; Nørskov, J. K.; Schlögl, R. ChemCatChem 2015, 7, 1105.
[74] Tominaga, K-I.; Sasaki, Y.; Kawai, M.; Watanabe, T.; Saito M. J. Chem. Soc., Chem. Commun. 1993, 629.
[75] Balaraman, E.; Gunanathan, C.; Zhang, J.; Shimon, L. J. W.; Milstein, D. Nat. Chem. 2011, 3, 609.
[76] Balaraman, E.; Ben-David, Y.; Milstein, D. Angew. Chem., Int. Ed. 2011, 50, 11702.
[77] Balaraman, E.; Gnanaprakasam, B.; Shimon, L. J. W.; Milstein, D. J. Am. Chem. Soc. 2010, 132, 16756.
[78] Han, Z.-B.; Rong, L.-C.; Wu, J.; Zhang, L.; Wang, Z.; Ding, K.-L.; Angew. Chem., Int. Ed. 2012, 51, 13041.
[79] Rezayee, N. M.; Huff, C. A.; Sanford, M. S. J. Am. Chem. Soc. 2015, 137, 1028.
[80] Kothandaraman, J.; Goeppert, A.; Czaun, M.; Olah, G. A.; Prakash, G. K. J. Am. Chem. Soc. 2016, 138, 778.
[81] Wesselbaum, S.; Stein, T. v.; Klankermayer, J.; Leitner, W. Angew. Chem., Int. Ed. 2012, 51, 7499.
[82] (a) Teunissen, H. T.; Elsevier, C. J. Chem. Commun. 1997, 667.
(b) Teunissen, H. T. Chem. Commun. 1998, 1367.
(c) Magro, A. A. N.; Eastham, G. R.; Cole-Hamilton, D. J. Chem. Commun. 2007, 3154.
(d) Rosi, L.; Frediani, M.; Frediani, P. J. Organomet. Chem. 2010, 695, 1314.
(e) Geilen, F. M. A.; Engendahl, B.; Harwardt, A.; Marquardt, W.; Klankermayer, J.; Leitner, W. Angew. Chem., Int. Ed. 2010, 49, 5510.
(f) Coetzee, J.; Dodds, D. L.; Klankermayer, J.; Brosinski, S.; Leitner, W.; Slawin, A. M. Z.; Cole-Hamilton, D. J. Chem.-Eur. J. 2013, 19, 11039.
(g) Stein, T. V.; Weigand, T.; Merkens, C.; Klankermayer, J.; Leitner, W. ChemCatChem. 2013, 5, 439.
(h) Stein, T. V.; Meuresch, M.; Limper, D.; Schmitz, M.; Hölscher, M.; Coetzee, J.; Cole-Hamilton, D. J.; Klankermayer, J.; Leitner, W. J. Am. Chem. Soc. 2014, 136, 13217.
[83] Zhang, L.-L.; Han, Z.-B.; Zhang, L.; Li, M.-X.; Ding, K.-L. Chin. J. Org. Chem. 2016, 36, 1824(in Chinese). (张琳莉, 韩召斌, 张磊, 李明星, 丁奎岭, 有机化学2016, 36, 1824.)
[84] Wesselbaum, S.; Moha, V.; Meuresch, M.; Brosinski, S.; Thenert, K. M.; Kothe, J.; Stein, T. V.; Englert, U.; Hölscher, M.; Klankermayer, J.; Leitner, W. Chem. Sci. 2015, 6, 693.
[85] Ren, X.-Y.; Zheng, Z.-Y.; Zhang, L.; Wang, Z.; Xia, C.-G.; Ding, K.-L. Angew. Chem., Int. Ed. 2017, 56, 310.
[86] Schneidewind, J.; Adam, R.; Baumann, W.; Jackstell, R.; Beller, M. Angew. Chem., Int. Ed. 2017, 56, 1890.
[87] Tominaga, K-I.; Sasaki, Y. Catal. Commun. 2000, 1, 1.
[88] Liu, Q.; Wu, L.-P.; Fleischer, I.; Selent, D.; Franke, R.; Jackstell, R.; Beller, M. Chem. Eur. J. 2014, 20, 6888.
[89] Ali, M.; Gual, A.; Ebeling, G.; Dupont, J. ChemCatChem 2014, 6, 2224.
[90] Srivastava, V. K.; Eilbracht, P. Catal. Commun. 2009, 10, 1791.
[91] Ostapowicz, T. G.; Schmitz, M.; Krystof, M.; Klankermayer, J.; Leitner, W. Angew. Chem., Int. Ed. 2013, 52, 12119.
[92] Wu, L.; Liu, Q.; Fleischer, I.; Jackstell, R.; Beller, M. Nat. Commun. 2014, 5, 3091.
[93] Fleischer, I.; Gehrtz, P. H.; Hirschbeck, V. Chem. Commun. 2015, 51, 12574.
[94] Klankermayer, J.; Leitner, W.; Beydoun, K.; Stein, T. V. Angew. Chem., Int. Ed. 2013, 52, 9554.
[95] Li, Y.; Sorribes, I.; Yan, T.; Junge, K.; Beller, M. Angew. Chem., Int. Ed. 2013, 52, 12156.
[96] Klankermayer, J.; Leitner, W.; Beydoun, K.; Stein, T. V. Angew. Chem., Int. Ed. 2013, 52, 9554.
[97] Beydoun, K.; Ghattas, G.; Thenert, K.; Klankermayer, J.; Leitner, W. Angew. Chem., Int. Ed. 2014, 53, 11010.
[98] Li, Y.; Sorribes, I.; Yan, T.; Junge, K.; Beller, M. Angew. Chem., Int. Ed. 2013, 52, 12156.
/
〈 |
|
〉 |