Chinese Journal of Organic Chemistry >
New Member of Luminescent Materials——Status and Future of White Light Emitting Gel
Received date: 2017-02-25
Revised date: 2017-04-24
Online published: 2017-05-02
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21476162, 21676185) and the International S & T Cooperation Project of China (Nos. 2012DFG41980, 2016YFE0114900).
White light emission materials consist of components emitting three primary colors (red, green and blue) or two complementary colors (orange or green), which can cover the entire visible region (380~750 nm). White light emitting gel with the solution flow character and solid plasticity has the advantages of low cost, easy processing and flexible use. Gelation of components with different emission colors will help the donor and receptor molecule to get closer, contribute to the dipole direction and overlap the emission spectra of the donor and the absorption spectra of the receptor, which promotes molecular energy transfer to achieve better performance of white light emitting. Here we focus on the resonance energy transfer and introduce the white light emitting gel with the receptor chromophore of organic compounds, organic metal complexes and rare earth metal ions. In the end the future prospects of white light emitting gel are proposed.
Key words: white light emitting; gel; energy transfer
Yang Hewei , Zhang Yuzhe , Li Yanjie , Wang Jingxiang , Li Xiaomeng , Song Jian , Zhang Bao , FengYaqing . New Member of Luminescent Materials——Status and Future of White Light Emitting Gel[J]. Chinese Journal of Organic Chemistry, 2017 , 37(8) : 1991 -2001 . DOI: 10.6023/cjoc201702039
[1] Kamtekar, K. T.; Monkman, A. P; Bryce, M. R. Adv. Mater. 2010, 22, 572.
[2] Chen, Z. L.; Li, H. L.; Wei, J.; Xiao, Y.; Yu, H. B. Chin. J. Org. Chem. 2015, 35, 789(in Chinese). (陈忠林, 李红玲, 韦驾, 肖义, 于海波, 有机化学, 2015, 35, 789.)
[3] Willis-Fox, N.; Kraft, M.; Arlt, J.; Scherf, U.; Evans, R. C. Adv. Funct. Mater. 2016, 26, 532.
[4] Chen, P.; Holten-Andersen, N. Adv. Opt. Mater. 2015, 3, 1041.
[5] Maiti, D. K.; Banerjee, A. Chem. Commun. 2013, 49, 6909.
[6] Melucci, M.; Zambianchi, M.; Barbarella, G.; Manet, I.; Montalti, M. J. Mater. Chem. 2010, 20, 9903.
[7] Balan, B.; Vijayakumar, C.; Ogi, S.; Takeuchi, M. J. Mater. Chem. 2012, 22, 11224.
[8] Gai, F.Y.; Zhou, T. L.; Zhang, L. G.; Li, X.; Hou, W. J.; Yang, X. C.; Li, Y. T.; Zhao, X. G.; Xu, D.; Liu, Y. L.; Huo, Q. S. Nanoscale 2012, 4, 6041.
[9] Zhang, X.; Rehm, S.; Safontsempere, M. M.; Würthner, F. Nat. Chem. 2009, 1, 623.
[10] Babu, S. S.; Aimi, J.; Ozawa, H.; Shirahata, N.; Saeki, A.; Seki, S.; Ajayaghosh, A.; Möhwald, H.; Nakanishi, T. Angew. Chem., Int. Edit. 2012, 124, 3447.
[11] Praveen, V.K.; Ranjith, C.; Armaroli, N. Angew. Chem. Int. Edit. 2014, 53, 365.
[12] Sun, H. B.; Liu, S. J.; Zhao, Q.; Huang, W. Chin. J. Chem. 2015, 33, 1140.
[13] Wang, T.; Wang, Z.Y.; Xie, D.Y.; Wang, C.; Zhen, X. L.; Li, Y. J.; Yu, X. D. RSC Adv. 2015, 5, 107694.
[14] Raymo, F. M.; Tomasulo, M. Chem. Soc. Rev. 2005, 34, 327.
[15] Hissler, M.; Harriman, A.; Khatyr, A.; Ziessel, R. Chem. Eur. J. 1999, 5, 3366.
[16] Verhoeven, J. W. J. Photochem. Photobiol. C 2006, 7, 40.
[17] Zhang, C.; Zhao, Y. A.; Yao, J. N. New J. Chem. 2011, 35, 973.
[18] Ajayaghosh, A.; Praveen, V. K.; Vijayakumar, C. Chem. Soc. Rev. 2008, 37, 109.
[19] Farinola, G. M.; Ragni, R. Chem. Soc. Rev. 2011, 40, 3467.
[20] Babu, S. S.; Kartha, K. K.; Ajayaghosh, A. J. Phys. Chem. Lett. 2010, 1, 3413.
[21] Ajayaghosh, A.; Praveen, V. K.; Vijayakumar, C.; George, S. J. Angew. Chem., Int. Edit. 2007, 119, 6376.
[22] Vijayakumar, C.; Praveen, V. K.; Ajayaghosh, A. Adv. Mater. 2009, 21, 2059.
[23] Giansante, C.; Raffy, G.; Fer, C. S.; Rahma,H.; Kao, M. T. J. Am. Chem. Soc. 2011, 133, 316.
[24] Abbel, R.; Grenier, C.; Pouderoijen, M. J.; Stouwdam, J. W.; Leclère, P. E. L. G.; Sijbesma, R. P.; Meijer, E. W.; Schenning, A. P.H. J. J. Am. Chem. Soc. 2009, 131, 833.
[25] Giansante, C.; Schäfer, C.; Raffy, G.; Guerzo, A. D. J. Phys. Chem. C 2012, 116, 21706.
[26] Abbel, R.; Weegen, R. V. D.; Pisula, W.; Surin, M.; Leclère, P.; Lazzaroni, R.; Meijer, E. W.; Schenning, A. P. H. J. Chem. Eur. J. 2009, 15, 9737.
[27] Bairi, P.; Roy, B.; Nandi, A. K. Chem. Commun. 2012, 48, 10850.
[28] Bairi, P.; Roy, B.; Chakraborty, P.; Nandi, A. K. ACS Appl. Mater. Inter. 2013, 5, 5478.
[29] Pallavi, P.; Bandyopadhyay, S.; Louis, J.; Deshmukh, A.; Patra, A. Chem. Commun. 2017, 53, 1257.
[30] Rao, K. V.; Datta, K. K. R.; Eswaramoorthy, M.; George, S. J. Adv. Mater. 2013, 25, 1713.
[31] Hemgesberg, M.; Bay, S.; Schütz, S.; Dörr, G.; Ernst, S.; Kowalsky, W.; Müller, T. J. J.; Wagenblast, G.; Thiel, W. R. Microporous Mesoporous Mater. 2013, 174, 1.
[32] Maity, A.; Ali, F.; Agarwalla, H.; Anothumakkoolb, B.; Das, A. Chem. Commun. 2015, 51, 2130.
[33] Mei, J.; Leung, N. L. C.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Chem. Rev. 2015, 115, 11718.
[34] Bhattacharya, S.; Samanta, S. K. Chem.-Eur. J. 2012, 18, 16632.
[35] Yadav, Y. J.; Heinrich, B.; Luca, G. D.; Talarico, A. M.; Mastropietro, T. F.; Ghedini, M.; Donnio, B.; Szerb, E. I. Adv. Opt. Mater. 2013, 1, 844.
[36] Kishimura, A.; Yamashita, T.; Aida, T. J. Am. Chem. Soc. 2005, 127, 179.
[37] Wang, F. F.; Tao, Y. T.; Huang, W. Acta Chim. Sinica 2015, 73, 9(in Chinese). (王芳芳, 陶友田, 黄维, 化学学报, 2015, 73, 9.)
[38] Cao, X.; Wu, Y.; Liu, K.; Yu, X.; Wu, B. J. Mater. Chem. 2012, 22, 2650.
[39] Cao, X. H.; Lan, H. C.; Li, Z. H.; Mao, Y. Y.; Chen, L. M.; Wu, Y. Q.; Yi, T. Phys. Chem. Chem. Phys. 2015, 17, 32297.
[40] Roy, S.; Katiyar, A. K.; Mondal, S. P.; Ray, S. K.; Biradha, K. ACS Appl. Mater. Inter. 2014, 6, 11493.
[41] Paoli, G. D.; Olic, Z.D.; Rizzo, F.; Cola, L. D.; Gtle, F. V. Adv. Funct. Mater. 2007, 17, 821.
[42] Huang, X.; Zucchi, G. L.; Tran, J.; Pansu, R. B.; Brosseau, A.; Geffroy, B.; Nief, F. O. New J. Chem. 2014, 38, 5793.
[43] Kumar, P.; Soumya, S.; Prasad, E. ACS Appl. Mater. Inter. 2016, 8, 8068.
[44] Laishram, R.; Bhowmik, S.; Maitra, U. J. Mater. Chem. C 2015, 3, 5885.
[45] Simmons, B. A.; Taylor, C. E.; Landis, F. A.; John, V. T.; McPherson, G. L.; Schwartz, D. K.; Moore, R. J. Am. Chem. Soc. 2001, 123, 2414.
[46] Katsube, S.; Harada, T.; Umecky, T.; Takamuku, T.; Kaji, T.; Hiramoto, M.; Katsumoto, Y.; Nishiyama, K. Chem. Lett. 2014, 43, 1861.
[47] Kim, H.; Chang, J. Y. RSC Adv. 2013, 3, 1774.
[48] Ghosh, K.; Balog, E. R. M.; Kahn, J. L.; Shepherd, D. P.; Martinez, J. S.; Rocha, R. C. Macromol. Chem. Phys. 2015, 216, 1856.
[49] Oxana, K.; Ronan, D.; Santos, C. D.; Markus, B.; Kruger, P. E. Angew. Chem., Int. Edit. 2012, 51, 7208.
[50] Sambri, L.; Cucinotta, F.; Paoli, G. D.; Stagnic, S.; Colab, L. D. New J. Chem. 2010, 34, 2093.
[51] Chen, P.; Li, Q.; Grindy, S.; Holten-Andersen, N. J. Am. Chem. Soc. 2015, 137, 11590.
[52] Sutar, P.; Suresh, V. M.; Maji, T. K. Chem. Commun. 2015, 51, 9876.
/
〈 |
|
〉 |