Chinese Journal of Organic Chemistry >
Recent Progress in Fluorescent Probe for the Detection of Reactive Carbonyl Species
Received date: 2017-03-24
Revised date: 2017-04-16
Online published: 2017-05-04
Supported by
Project supported by the National Natural Science Foundation of China (No. 21401144) and the Natural Science Foundation of Hubei Province (No. 2013CFB236).
Reactive carbonyl species (RCS) have long been known as carcinogens and human poison. Elevated levels of RCS have also been associated with pathologies. In order to elucidate these roles of RCS, the design and development technology for selective and sensitive detection to RCS in vivo are crucial. In rencent years, fluorescent probes for detecting reactive carbonyl species, reactive oxygen, reactive nitrogen, hypochlorous acid and thiols have been developed due to various advantages such as simplicity of operation, high sensitivity and selectivity, response quickly and real-time tracking in living cells. Few reviews have been made for detecting reactive carbonyl species. Therefore, in this review, a general overview of the reaction-based fluoresccent in the selected recent research is provided involving design, recognition mechanism and application of fluorescent probes for detecting reactive carbonyl species of formaldehyde, methylglyoxal, malondialdehyde, acrolein and so on. Finally, the prospect to design and applications of probes for reactive carbonyl species is given.
Chen Yi , Hu Aohan , Yang Lingyi , Li Zaoying , Yan Kun . Recent Progress in Fluorescent Probe for the Detection of Reactive Carbonyl Species[J]. Chinese Journal of Organic Chemistry, 2017 , 37(8) : 1939 -1951 . DOI: 10.6023/cjoc201703040
[1] (a) Kalapos, M. P. Diabetes Res. Clin. Pract. 2013, 99, 260.
(b) Onyango, A. N. Chem. Phys. Lipids 2012, 165, 777.
[2] Semchyshyn, H. M. Sci. World J. 2014, 2014, 10.
[3] (a) Colzani, M.; De Maddis, D.; Casali, G.; Carini, M.; Vistoli, G.; Aldini, G. ChemMedChem 2016, 11, 1778.
(b) Regazzoni, L.; De Courten, B.; Garzon, D.; Altomare, A.; Marinello, C.; Jakubova, M.; Vallova, S.; Krumpolec, P.; Carini, M.; Ukropec, J.; Ukropcova, B.; Aldini, G. Sci. Rep. 2016, 6, 27224.
(c) Hwang, S.; Lee, Y.-M.; Aldini, G.; Yeum, K.-J. Molecules 2016, 21, 280.
(d) Biswas, S.; Mano, J. I. Plant Cell Physiol. 2016, 57, 1432.
[4] (a) Nemet, I.; Varga-Defterdarovi?, L.; Turk, Z. Mol. Nutr. Food Res. 2006, 50, 1105.
(b) Kato, S.; Burke, P. J.; Koch, T. H.; Bierbaum, V. M. Anal. Chem. 2001, 73, 2992.
(c) Soman, A.; Qiu, Y.; Chan Li, Q. J. Chromatogr. Sci. 2008, 46, 461.
[5] (a) Jung, H. S.; Chen, X.; Kim, J. S.; Yoon, J. Chem. Soc. Rev. 2013, 42, 6019.
(b) Niu, L.-Y.; Chen, Y.-Z.; Zheng, H.-R.; Wu, L.-Z.; Tung, C.-H.; Yang, Q.-Z. Chem. Soc. Rev. 2015, 44, 6143.
(c) Wang, S.; Shen, S.; Zhang, Y.; Dai, X.; Zhao, B. Chin. J. Org. Chem. 2014, 34, 1717(in Chinese). (王胜清, 申世立, 张延如, 戴溪, 赵宝祥, 有机化学, 2014, 34, 1717.)
[6] (a) Santos-Figueroa, L. E.; Moragues, M. E.; Climent, E.; Agostini, A.; Martinez-Manez, R.; Sancenon, F. Chem. Soc. Rev. 2013, 42, 3489.
(b) Li, B.; Meng, W.; Yang, M.; Su, N.; Liu, X.; Yang, B. Chin. J. Org. Chem. 2015, 35, 2629(in Chinese). (李波, 孟文斐, 杨美盼, 苏娜, 刘晓静, 杨秉勤, 有机化学, 2015, 35, 2629.)
[7] (a) Guo, Z.; Park, S.; Yoon, J.; Shin, I. Chem. Soc. Rev. 2014, 43, 16.
(b) Wang, X.-D.; Wolfbeis, O. S. Chem. Soc. Rev. 2014, 43, 3666.
(c) Zhang, R.; Zhao, J.; Han, G.; Liu, Z.; Liu, C.; Zhang, C.; Liu, B.; Jiang, C.; Liu, R.; Zhao, T.; Han, M.-Y.; Zhang, Z. J. Am. Chem. Soc. 2016, 138, 3769.
[8] Chen, X.; Tian, X.; Shin, I.; Yoon, J. Chem. Soc. Rev. 2011, 40, 4783.
[9] (a) Zhang, H.; Liu, R.; Liu, J.; Li, L.; Wang, P.; Yao, S. Q.; Xu, Z.; Sun, H. Chem. Sci. 2016, 7, 256.
(b) Meimetis, L. G.; Giedt, R. J.; Mikula, H.; Carlson, J. C.; Kohler, R. H.; Pirovich, D. B.; Weissleder, R. Chem. Commun. 2016, 52, 9953.
[10] (a) Chen, X.; Lee, K.-A.; Ren, X.; Ryu, J.-C.; Kim, G.; Ryu, J.-H.; Lee, W.-J.; Yoon, J. Nat Protoc. 2016, 11, 1219.
(b) Fan, J.; Han, Z.; Kang, Y.; Peng, X. Sci. Rep. 2016, 6, 19562.
(c) Zhu, X.; Xiong, M.; Liu, H.-W.; Mao, G.-J.; Zhou, L.; Zhang, J.; Hu, X.; Zhang, X.-B.; Tan, W. Chem. Commun. 2016, 52, 733.
[11] (a) Choi, S.-A.; Park, C. S.; Kwon, O. S.; Giong, H.-K.; Lee, J.-S.; Ha, T. H.; Lee, C.-S. Sci. Rep. 2016, 6, 26203.
(b) Li, W.; Fang, B.; Jin, M.; Tian, Y. Anal. Chem. 2017, 89, 2553.
(c) Xu, K.; Luan, D.; Wang, X.; Hu, B.; Liu, X.; Kong, F.; Tang, B. Angew. Chem. 2016, 128, 12943.
[12] (a) Deng, B.; Ren, M.; Wang, J.-Y.; Zhou, K.; Li, W. Sens. Actuators, B 2017, 248, 50.
(b) Cheng, D.; Pan, Y.; Wang, L.; Zeng, Z.; Yuan, L.; Zhang, X.; Chang, Y.-T. J. Am. Chem. Soc. 2017, 139, 285.
(c) Li, Y.; Lü, Z.; Liu, M.; Xing. G. Chin. J. Org. Chem. 2016, 36, 962(in Chinese). (李杨洁, 吕子奇, 刘敏, 邢国文, 有机化学, 2016, 36, 962.)
[13] (a) Yuan, Q.; Zhao, Z.-M.; Zhang, Y.-R.; Su, L.; Miao, J.-Y.; Zhao, B.-X. Sens. Actuators, B. 2017, 247, 736.
(b) Wang, Y.; Li, J.; Feng, L.; Yu, J.; Zhang, Y.; Ye, D.; Chen, H.-Y. Anal. Chem. 2016, 88, 12403.
(c) Li, M.; Wang, Y.; Liu, G.; Lü, H.; Xing, G. Chin. J. Org. Chem. 2017, 37, 356(in Chinese). (李美含, 王宇童, 刘广建, 吕海娟, 邢国文, 有机化学, 2017, 37, 356.)
[14] (a) Zhang, J.-X.; Li, H.; Chen, C.-F.; Lan, R.; Chan, W.-L.; Law, G.-L.; Wang, W.-K.; Wang, K.-L. Chem. Commun. 2012, 48, 9646.
(b) Wang, B.; Fan, J.; Wang, X.; Zhu, H.; Wang, J.; Mu, H.; Peng, X. Chem. Commun. 2015, 51, 792.
(c) Singh, H.; Lee, H. W.; Heo, C. H.; Byun, J. W.; SarKar, A. R.; Kim, H. M. Chem. Commun. 2015, 51, 12099.
[15] (a) Shi, Y.; Lan, F.; Matson, C.; Mulligan, P.; Whetstine, J. R.; Cole, P. A.; Casero, R. A.; Shi, Y. Cell 2004, 119, 941.
(b) Tsukada, Y.-I.; Fang, J.; Erdjument-Bromage, H.; Warren, M. E.; Borchers, C. H.; Tempst, P. and Zhang, Y. Nature 2006, 439, 811.
(c) Whetstine, J. R.; Nottke, A.; Lan, F.; Huarte, M.; Smolikov, S.; Chen, Z.; Spooner, E.; Li, E.; Zhang, G.; Colaiacovo, M. Cell 2006, 125, 467.
[16] Tong, Z.; Han, C.; Luo, W.; Wang, X.; Li, H.; Luo, H.; Zhou, J.; Qi, J.; He, R. Age 2013, 35, 583.
[17] Tong, Z.; Zhang, J.; Luo, W.; Wang, W.; Li, F.; Li, H.; Luo, H.; Lu, J.; Zhou, J.; Wan, Y.; He, R. Neurobiol. Aging 2011, 32, 31.
[18] Tulpule, K.; Dringen, R. J. Neurochem. 2013, 127, 7.
[19] (a) Goodman, C. G.; Johnson, J. S. J. Am. Chem. Soc. 2015, 137, 14574.
(b) Overman, L. E.; Humphreys, P. G.; Welmaker, G. S. Org. React. 2011, 748.
(c) Winter, R. F.; Rauhut, G. Chem.-Eur. J. 2002, 8, 641.
(d) Mccormack, M. P.; Shalumova, T.; Tanski, J. M.; Waters, S. P. Org. Lett. 2010, 12, 3906.
[20] Brewer, T. F.; Chang, C. J. J. Am. Chem. Soc. 2015, 137, 10886.
[21] Roth, A.; Li, H.; Anorma, C.; Chan, J. J. Am. Chem. Soc. 2015, 137, 10890.
[22] Xu, J.; Zhang, Y.; Zeng, L.; Liu, J.; Kinsella, J. M.; Sheng, R. Talanta 2016, 160, 645.
[23] He, L.; Yang, X.; Liu, Y.; Kong, X.; Lin, W. Chem. Commun. 2016, 52, 4029.
[24] (a) Dai, Z.-R.; Ge, G.-B.; Feng, L.; Ning, J.; Hu, L.-H.; Jin, Q.; Wang, D.-D.; Lv, X.; Dou, T.-Y.; Cui, J.-N. J. Am. Chem. Soc. 2015, 137, 14488.
(b) Zhu, B.; Li, P.; Shu, W.; Wang, X.; Liu, C.; Wang, Y.; Wang, Z.; Wang, Y.; Tang, B. Anal. Chem. 2016, 88, 12532.
(c) Zhou, L.; Zhang, X.; Wang, Q.; Lv, Y.; Mao, G.; Luo, A.; Wu, Y.; Wu, Y.; Zhang, J.; Tan, W. J. Am. Chem. Soc. 2014, 136, 9838.
(d) Zhang, J.; Zhu, X.-Y.; Hu, X.-X.; Liu, H.-W.; Li, J.; Feng, L. L.; Yin, X.; Zhang, X.-B.; Tan, W. Anal. Chem. 2016, 88, 11892.
(e) Bae, S. K.; Heo, C. H.; Choi, D. J.; Sen, D.; Joe, E.-H.; Cho, B. R.; Kim, H. M. J. Am. Chem. Soc. 2013, 135, 9915.
(f) Cheng, D.; Pan, Y.; Wang, L.; Zeng, Z.-B.; Yuan, L.; Zhang, X.-B.; Chang, Y.-T. J. Am. Chem. Soc. 2017, 139, 285.
(g) Kim, H. M.; Cho, B. R. Acc. Chem. Res. 2009, 42, 863.
[25] Li, J.-B.; Wang, Q.-Q.; Yuan, L.; Wu, Y.-X.; Hu, X.-X.; Zhang, X.-B.; Tan, W. Analyst 2016, 141, 3395.
[26] Xie, Z.; Ge, J.; Zhang, H.; Bai, T.; He, S.; Ling, J.; Sun, H.; Zhu, Q. Sens. Actuators, B 2017, 241, 1050.
[27] Qian, X.; Xiao, Y.; Xu, Y.; Guo, X.; Qian, J.; Zhu, W. Chem. Commun. 2010, 46, 6418
[28] Ethirajan, M.; Chen, Y.; Joshi, P.; Pandey, R. K. Chem. Soc. Rev. 2011, 40, 340.
[29] Kotagiri, N.; Sudlow, G. P.; Akers, W. J.; Achilefu, S. Nat. Nanotechnol. 2015, 10, 370.
[30] Liu, W.; Truillet, C.; Flavell, R. R.; Brewer, T. F.; Evans, M. J.; Wilson, D. M.; Chang, C. J. Chem. Sci. 2016, 7, 5503.
[31] (a) Han, Q.; Mou, Z.; Wang, H.; Tang, X.; Dong, Z.; Wang, L.; Dong, X.; Liu, W. Anal. Chem. 2016, 88, 7206.
(b) Shu, W.; Yan, L.; Liu, J.; Wang, Z.; Zhang, S.; Tang, C.; Liu, C.; Zhu, B.; Du, B. Ind. Eng. Chem. Res. 2015, 54, 8056.
(c) Zhou, P.; Yao, J.; Hu, G.; Fang, J. ACS Chem. Biol. 2016, 11,1098.
(d) Liu, X.-L.; Du, X.-J.; Dai, C.-G.; Song, Q.-H. J. Org. Chem. 2014, 79, 9481.
[32] Tang, Y.; Kong, X.; Liu, Z.-R.; Xu, A.; Lin, W. Anal. Chem. 2016, 88, 9359.
[33] Lee, Y. H.; Tang, Y.; Verwilst, P.; Lin, W.; Kim, J. S. Chem. Commun. 2016, 52, 11247.
[34] (a) Watts, C. Biochim. Biophys. Acta, Proteins Proteomics 2012, 1824, 14.
(b) Zhao, H. Traffic 2012, 13, 1307.
[35] Zhu, H.; Fan, J.; Du, J.; Peng, X. Acc. Chem. Res. 2016, 49, 2115.
[36] (a) Zhou, J.; Shi, W.; Li, L.; Gong, Q.; Wu, X.; Li, X.; Ma, H. Anal. Chem. 2016, 88, 4557.
(b) Dong, B.; Song, X.; Wang, C.; Kong, X.; Tang, Y.; Lin, W. Anal. Chem. 2016, 88, 4085.
(c) Qiu, K.; Huang, H.; Liu, B.; Liu, Y.; Huang, Z.; Chen, Y.; Ji, L.-N.; Chao, H. ACS Appl. Mater. Interfaces. 2016, 8, 12702.
(d) Wan, Q.; Chen, S.; Shi, W.; Li, L.; Ma, H. Angew. Chem., Int. Ed. 2014, 53, 10916.
(e) Wang, Y.; Li, J.; Feng, L.; Yu, J.; Zhang, Y.; Ye, D.; Chen, H.-Y. Anal. Chem. 2016, 88, 12403.
(f) Fan, J.; Han, Z.; Kang, Y.; Peng, X. Sci. Rep. 2016, 6, 1.
[37] Tang, Y.; Kong, X.; Xu, A.; Dong, B.; Lin, W. Angew. Chem., Int. Ed. 2016, 55, 3356.
[38] Liu, C.; Shi, C.; Li, H.; Du, W.; Li, Z.; Wei, L.; Yu, M. Sens. Actuators, B 2015, 219, 185.
[39] Song, H.; Rajendiran, S.; Kim, N.; Jeong, S. K.; Koo, E.; Park, G.; Thangadurai, T. D.; Yoon, S. Tetrahedron Lett. 2012, 53, 4913.
[40] Dong, B.; Song, X.; Tang, Y.; Lin, W. Sens. Actuators, B 2016, 222, 325.
[41] Liu, C.; Cheng, A.-W.; Xia, X.-K.; Liu, Y.-F.; He, S.-W.; Guo, X.; Sun, J.-Y. Anal. Methods 2016, 8, 2764.
[42] Aksornneam, L.; Kanatharana, P.; Thavarungkul, P.; Thammakhet, C. Anal. Methods 2016, 8, 1249.
[43] He, L.; Yang, X.; Ren, M.; Kong, X.; Liu, Y.; Lin, W. Chem. Commun. 2016, 52, 9582.
[44] Zhao, X. J.; Yang, J. H.; Li, Y. F. Sens. Actuators, B 2014, 203, 417.
[45] Zhang, S.; Yang, H.; Ma, Y.; Fang, Y. Sens. Actuators, B 2016, 227, 271.
[46] Wong, K.-F.; Deng, J.-R.; Wei, X.-Q.; Shao, S.-P.; Xiang, D.-P.; Wong, M.-K. Org. Biomol. Chem. 2015, 13, 7408.
[47] Lin, J.-M.; Huang, Y.-Q.; Liu, Z.-B.; Lin, C.-Q.; Ma, X.; Liu, J.-M. RSC Adv. 2015, 5, 99944.
[48] Thornalley, P. J. Drug Metabol. Drug Interact. 2008, 23, 125.
[49] (a) Matafome, P.; Sena, C.; Seiça, R. Endocrine 2013, 43, 472.
(b) Degen, J.; Vogel, M.; Richter, D.; Hellwig, M.; Henle, T. J. Agric. Food Chem. 2013, 61, 10253.
[50] Kilhovd, B. K.; Juutilainen, A.; Lehto, S.; Rönnemaa, T.; Torjesen, P. A.; Hanssen, K. F.; Laakso, M. Atherosclerosis 2009, 205, 590.
[51] Eberhardt, M. J.; Filipovic, M. R.; Leffler, A.; De La Roche, J.; Kistner, K.; Fischer, M. J.; Fleming, T.; Zimmermann, K.; IvanovicBurmazovic, I.; Nawroth, P. P. J. Biol. Chem. 2012, 287, 28291.
[52] Nakayama, K.; Nakayama, M.; Iwabuchi, M.; Terawaki, H.; Sato, T.; Kohno, M.; Ito, S. Am. J. Nephrol. 2008, 28, 871.
[53] Wang, T.; Douglass Jr, E. F.; Fitzgerald, K. J.; Spiegel, D. A. J. Am. Chem. Soc. 2013, 135, 12429.
[54] (a) Hou, J.-T.; Wu, M.-Y.; Li, K.; Yang, J.; Yu, K.-K.; Xie, Y.-M.; Yu, X.-Q. Chem. Commun. 2014, 50, 8640.
(b) Yuan, H.; Cho, H.; Chen, H. H.; Panagia, M.; Sosnovik, D. E.; Josephson, L. Chem. Commun. 2013, 49, 10361.
(c) Xiao, H.; Li, J.; Zhao, J.; Yin, G.; Quan, Y.; Wang, J.; Wang, R. J. Mater. Chem. B 2015, 3, 1633.
(d) Li, P.; Zhang, W.; Li, K.; Liu, X.; Xiao, H.; Zhang, W.; Tang, B. Anal. Chem. 2013, 85, 9877.
(e) Masanta, G.; Heo, C. H.; Lim, C. S.; Bae, S. K.; Cho, B. R.; Kim, H. M. Chem. Commun. 2012, 48, 3518.
(f) Lim, C. S.; Masanta, G.; Kim, H. J.; Han, J. H.; Kim, H. M.; Cho, B. R. J. Am. Chem. Soc. 2011, 133, 11132.
[55] Pun, P. B. L.; Logan, A.; Darley-Usmar, V.; Chacko, B.; Johnson, M. S.; Huang, G. W.; Rogatti, S.; Prime, T. A.; Methner, C.; Krieg, T.; Fearnley, I. M.; Larsen, L.; Larsen, D. S.; Menger, K. E.; Collins, Y.; James, A. M.; Kumar, G. D. K.; Hartley, R. C.; Smith, R. a. J.; Murphy, M. P. Free Radicals Biol. Med. 2014, 67, 437.
[56] Tang, T.; Zhou, Y.; Chen, Y.; Li, M.; Feng, Y.; Wang, C.; Wang, S.; Zhou, X. Anal. Methods 2015, 7, 2386.
[57] Mei, B.; Miao, Q.; Tang, A.; Liang, G. Nanoscale 2015, 7, 15605.
[58] Yang, Z.; Liang, G.; Ma, M.; Abbah, A. S.; Lu, W. W.; Xu, B. Chem. Commun. 2007, 8, 843.
[59] Su, T.; Tang, Z.; He, H.; Li, W.; Wang, X.; Liao, C.; Sun, Y.; Wang, Q. Chem. Sci. 2014, 5, 4204.
[60] Yu, Y.; Chau, Y. Biomacromolecules 2015, 16, 56.
[61] Miao, Q.; Wu, Z.; Hai, Z.; Tao, C.; Yuan, Q.; Gong, Y.; Guan, Y.; Jiang, J.; Liang, G. Nanoscale 2015, 7, 2797.
[62] Liu, S.; Luo, Y.; Liang, G. Nanoscale 2016, 8, 766.
[63] Yuen, L. H.; Saxena, N. S.; Park, H. S.; Weinberg, K.; Kool, E. T. ACS Chem. Biol. 2016, 11, 2312.
[64] Liu, C.; Jiao, X.; He, S.; Zhao, L.; Zeng, X. Dyes Pigm. 2017, 138, 23.
[65] (a) Zhang, F.; Liang, X.; Zhang, W.; Wang, Y.-L.; Wang, H.; Mohammed, Y. H.; Song, B.; Zhang, R.; Yuan, J. Biosens. Bioelectron. 2017, 87, 1005.
(b) Cao, L.; Zhang, R.; Zhang, W.; Du, Z.; Liu, C.; Ye, Z.; Song, B.; Yuan, J. Biomaterials 2015, 68, 21.
(c) Zhang, R.; Ye, Z.; Song, B.; Dai, Z.; An, X.; Yuan, J. Inorg. Chem. 2013, 52, 10325.
(d) Zhang, R.; Ye, Z.; Yin, Y.; Wang, G.; Jin, D.; Yuan, J.; Piper, J. A. Bioconjugate Chem. 2012, 23, 725.
[66] Zhang, W.; Zhang, F.; Wang, Y.-L.; Song, B.; Zhang, R.; Yuan, J. Inorg. Chem. 2017, 56, 1309.
[67] Gorrini, C.; Harris, I. S. and Mak, T. W. Nat. Rev. Drug Discovery 2013, 12, 931.
[68] Riggins, J. N.; Pratt, D. A.; Voehler, M.; Daniels, J. S.; Marnett, L. J. J. Am. Chem. Soc. 2004, 126, 10571.
[69] Niedernhofer, L. J.; Daniels, J. S.; Rouzer, C. A.; Greene, R. E.; Marnett, L. J. J. Biol. Chem. 2003, 278, 31426.
[70] (a) Jain, S. K.; Mcvie, R.; Smith, T. Diabetes Care 2000, 23, 1389.
(b) Tajika, K.; Okamatsu, K.; Takano, M.; Inami, S.; Yamamoto, M.; Murakami, D.; Kobayashi, N.; Ohba, T.; Hata, N.; Seino, Y.; Mizuno, K. Circ. J. 2012, 76, 2211.
(c) Romieu, I.; Barraza-Villarreal, A.; Escamilla-Nuñez, C.; Almstrand, A.-C.; Diaz-Sanchez, D.; Sly, P. D.; Olin, A.-C. J. Allergy Clin. Immunol. 2008, 121, 903.
(d) Dillioglugil, M. O.; Mek?k, H.; Muezzinoglu, B.; Ozkan, T. A.; Demir, C. G.; Dillioglugil, O. Int. Urol. Nephrol. 2012, 44, 1691.
[71] Chen, J.; Zeng, L.; Xia, T.; Li, S.; Yan, T.; Wu, S.; Qiu, G.; Liu, Z. Anal. Chem. 2015, 87, 8052.
[72] Pilz, J.; Meineke, I.; Gleiter, C. H. J. Chromatogr. Biomed. Appl. 2000, 742, 315.
[73] Hensley, K.; Robinson, K. A.; Gabbita, S. P.; Salsman, S.; Floyd, R. A. Free Radic. Biol. Med. 2000, 28, 1456.
[74] (a) Sharmin, S.; Sakata, K.; Kashiwagi, K.; Ueda, S.; Iwasaki, S.; Shirahata, A.; Igarashi, K. Biochem. Biophys. Res. Commun. 2001, 282, 228.
(b) Yoshida, M.; Tomitori, H.; Machi, Y.; Hagihara, M.; Higashi, K.; Goda, H.; Ohya, T.; Niitsu, M.; Kashiwagi, K.; Igarashi, K. Biochem. Biophys. Res. Commun. 2009, 378, 313.
[75] Togashi, M.; Terai, T.; Kojima, H.; Hanaoka, K.; Igarashi, K.; Hirata, Y.; Urano, Y.; Nagano, T. Chem. Commun. 2014, 50, 14946.
/
〈 |
|
〉 |