Chinese Journal of Organic Chemistry >
Progress on Donor-Acceptor Type Thermally Activated Delayed Fluorescence Based Blue Emitters
Received date: 2017-04-11
Revised date: 2017-06-03
Online published: 2017-06-16
Supported by
Project supported by the National Natural Science Foundation of China (Nos.61671162,21372051),the Science and Technology Planning Project of Guangdong Province (No.2016A010103031) and the Guangdong Provience Universities and Colleges Young Pearl River Scholar Funded Scheme (2016).
In thermally activated delayed fluorescence (TADF) based emitters, the excitons from the lowest triplet state (T1) can be efficiently upconverted into the lowest singlet (S1) state via reverse intersystem crossing (RISC) process due to the small energy gap (ΔEST) between their S1 and T1 states, harvesting both S1 and T1 excitons for emission, with non-noble metals, which can break the internal/external quantum efficiency (IQE/EQE) (≤25%/≤ 5%) limitation of conventional fluorescence based organic light-emitting diodes (OLEDs). Their no-noble metals feature makes them more competitive than phosphorescence materials in making OLEDs. Among the vast of TADF materials, eletrons donor-acceptor (D-A) type is one of the most popular TADF material due to their outstanding performance and convenience of preparation. On the other hand, efficient blue emitters are facing issues related to their stability and color purity that makes their development quite challenging for researchers. In this review, the D-A type blue TADF emitters and OLEDs reported recently are summarized, the mechanism of TADF based OLEDs and the principle of designs are elaborated, and a full vision of its development is made.
Tan Jihua , Huo Yanping , Cai Ning , Ji Shaomin , Li Zongzhi , Zhang Li . Progress on Donor-Acceptor Type Thermally Activated Delayed Fluorescence Based Blue Emitters[J]. Chinese Journal of Organic Chemistry, 2017 , 37(10) : 2457 -2480 . DOI: 10.6023/cjoc201704015
[1] Tang, C. W.; van Slyke, S. A. Appl. Phys. Lett. 1987, 51, 913.
[2] (a) Adachi, C. Jpn. J. Appl. Phys. 2014, 53, 101.
(b) Li, B. L. Chin. J. Org. Chem. 2015, 35, 2487(in Chinese). (李保林, 有机化学, 2015, 35, 2487.)
(c) Wu, Y.; Zhang, Z.; Yue, S.; Huang, R.; Du, H.; Zhao, Y. Chin. J. Chem. 2015, 33, 897.
(d) Duan, L.; Tsuboi, T.; Qiu, Y. Chin. J. Chem. 2015, 33, 859.
(e) Zeng, H.; Huang, Q.; Liu, J.; Huang, Y.; Zhou, J.; Zhao, S.; Lu, Z. Chin. J. Chem. 2016, 34, 387.
(f) Jiu, Y.; Wang, J.; Liu, C.; Lai, W.; Zhao, L.; Li, X.; Jiang, Y.; Xu, W.; Zhang, X.; Huang, W. Chin. J. Chem. 2015, 33, 873.
(g) Luo, J.; Xie, G.; Gong, S.; Chen, T.; Yang, C. Chem. Commun. 2016, 52, 2292.
(f) Xie, G.; Luo, J.; Huang, M.; Chen, T.; Wu, K.; Gong, S.; Yang, C. Adv. Mater. 2017, 29, 1604223.
[3] Helfrich, W.; Schneider, W. G. Phys. Rev. Lett. 1965, 14, 229.
[4] Baldo, M. A.; O'Brien, D. F.; Thompson, M. E.; Forrest, S. R. Phys. Rev. B 1999, 60, 14422.
[5] Turro, N. J.; Ramamurthy, V.; Scaiano, J. C. Photochem. Photobiol. 2012, 88, 1033.
[6] Forrest, S. R.; Baldo, M. A.; O'Brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M. E. Nature 1998, 395, 151.
[7] Tao, Y. T.; Yang, C. L.; Qin, J. Q. Chem. Soc. Rev. 2011, 40, 2943.
[8] (a) Goushi, K.; Yoshida, K.; Sato, K.; Adachi, C. Nat. Photonics 2012, 6, 253.
(b) Zhu, M. Z.; Yang, C. L. Chem. Soc. Rev. 2013, 42, 4963.
(c) Reineke, S.; Baldo, M. A. Phys. Status Solidi A 2012, 209, 2341.
(d) Lin, M. S.; Chi, L. C.; Chang, H. W.; Huang, Y. H.; Tien, K. C.; Chen, C. C.; Chang, C. H.; Wu, C. C.; Chaskar, A.; Chou, S. H.; Ting, H. C.; Wong, K. T.; Liu, Y. H.; Chi, Y. J. Mater. Chem. 2012, 22, 870.
[9] Endo, A.; Ogasawara, M.; Takahashi, A.; Yokoyama, D.; Kato, Y.; Adachi, C. Adv. Mater. 2009, 21, 4802.
[10] Zhang, Q.; Li, B.; Huang, S.; Nomura, H.; Tanaka, H.; Adachi, C. Nat. Photonics 2014, 8, 326.
[11] Sato, K.; Shizu, K.; Yoshimura, K.; Kawada, A.; Miyazaki, H.; Adachi, C. Phys. Rev. Lett. 2013, 110, 247401.
[12] Baleizão, C.; Nagl, S.; Borisov, S. M.; Schäferling, M.; Wolfbeis, O. S.; Berberan-Santos, M. N. Chem.-Eur. J. 2007, 13, 3643.
[13] Tao, Y.; Yuan, K.; Chen, T.; Xu, P.; Li, H.; Chen, R.; Zheng, C.; Zhang, L.; Huang, W. Adv. Mater. 2014, 26, 7931.
[14] Chen, T.; Zheng, L.; Yuan, J.; An, Z.; Chen, R.; Tao, Y.; Li, H.; Xie, X.; Huang, W. Sci. Rep. 2015, 5, 10923.
[15] Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Nature 2012, 492, 234.
[16] Mehes, G.; Nomura, H.; Zhang, Q.; Nakagawa, T.; Adachi, C. Angew. Chem., Int. Ed. 2012, 51, 11311.
[17] Kawasumi, K.; Wu, T.; Zhu, T.; Chae, H. S.; Van Voorhis, T.; Baldo, M. A.; Swager, T. M. J. Am. Chem. Soc. 2015, 137, 11908.
[18] Lee, S. Y.; Yasuda, T.; Yang, Y. S.; Zhang, Q.; Adachi, C. Angew. Chem. 2014, 126, 6520.
[19] Lee, S. Y.; Yasuda, T.; Park, I. S.; Adachi, C. Dalton. Trans. 2015, 44, 8356.
[20] Zhang, Q.; Li, J.; Shizu, K.; Huang, S.; Hirata, S.; Miyazaki, H.; Adachi, C. J. Am. Chem. Soc. 2012, 134, 14706.
[21] Yao, L.; Yang, B.; Ma, Y. Sci. China, Chem. 2014, 57, 335.
[22] Guo, J.; Li, X. L.; Nie, H.; Luo, W.; Gan, S.; Hu, S.; Hu, R.; Qin, A.; Zhao, Z.; Su, S. J.; Tang, B. Z. Adv. Funct. Mater. 2017, 27, 1606458.
[23] Shizu, K.; Noda, H.; Tanaka, H.; Taneda, M.; Uejima, M.; Sato, T.; Tanaka, K.; Kaji, H.; Adachi, C. J. Phys. Chem. C 2015, 119, 26283.
[24] Hirata, S.; Sakai, Y.; Masui, K.; Tanaka, H.; Lee, S. Y.; Nomura, H.; Nakamura, N.; Yasumatsu, M.; Nakanotani, H.; Zhang, Q.; Shizu, K.; Miyazaki, H.; Adachi, C. Nat. Mater. 2015, 14, 330.
[25] Su, S. J.; Gonmori, E.; Sasabe, H.; Kido, J. Adv. Mater. 2008, 20, 4189.
[26] Endo, A.; Sato, K.; Yoshimura, K.; Kai, T.; Kawada, A.; Miya-zaki, H.; Adachi, C. Appl. Phys. Lett. 2011, 98, 083302.
[27] Hirata, S.; Sakai, Y.; Masui, K.; Tanaka, H.; Lee, S. Y.; Nomura, H.; Nakamura, N.; Yasumatsu, M.; Nakanotani, H.; Zhang, Q.; Shizu, K.; Miyazaki, H.; Adachi, C. Nat. Mater. 2015, 14, 330.
[28] Lee, S. Y.; Yasuda, T.; Nomura, H.; Adachi, C. Appl. Phys. Lett. 2012, 101, 093306.
[29] Cha, J. R.; Lee, C. W.; Lee, J. Y.; Gong, M. S. Dyes Pigm. 2016, 134, 562.
[30] Kim, H. M.; Choi, J. M.; Lee, J. Y. RSC Adv. 2016, 6, 64133.
[31] Lee, D. R.; Choi, J. M.; Lee, C. W.; Lee, J. Y. ACS Appl. Mater. Interfaces 2016, 8, 23190.
[32] Kulkarni, A. P.; Tonzola, C. J.; Babel, A.; Jenekhe, S. A. Chem. Mater. 2004, 16, 4556.
[33] Zhu, R.; Wen, G. A.; Feng, J. C.; Chen, R. F.; Zhao, L.; Yao, H. P.; Fan, Q. L.; Wei, W.; Peng, B.; Huang, W. Macromol. Rapid Commun. 2005, 26, 1729.
[34] Zhang, Z. M.; Li, G. W.; Ma, Y. G.; Wu, F.; Tian, W. J.; Shen, J. C.; Chin. J. Org. Chem. 2000, 20, 529(in Chinese). (张志明, 李国文, 马於光, 无房, 田文晶, 沈家骢, 有机化学, 2000, 20, 529.)
[35] Lee, J.; Shizu, K.; Tanaka, H.; Nomura, H.; Yasuda, T.; Adachi, C. J. Mater. Chem. C 2013, 1, 4599.
[36] Zhang, Q.; Li, B.; Huang, S.; Nomura, H.; Tanaka, H.; Adachi, C. Nat. Photonics 2014, 8, 326.
[37] (a) Obolda, A.; Peng, Q.; He, C.; Zhang, T.; Ren, J.; Ma, H.; Shuai, Z.; Li, F. Adv. Mater. 2016, 28, 4740.
(b) Tanaka, H.; Shizu, K.; Miyazaki, H.; Adachi, C. Chem. Commun. 2012, 48, 11392.
(c) Wu, K.; Zhang, T.; Zhan, L.; Zhong, C.; Gong, S.; Jiang, N.; Lu, Z.-H.; Yang, C. Chem.-Eur. J. 2016, 22, 10860.
(d) Takahashi, T.; Shizu, K.; Yasuda, T.; Togashi, K.; Adachi, C. Sci. Technol. Adv. Mater. 2014, 15, 034202.
[38] (a) Su, S. J.; Sasabe, H.; Takeda, T.; Kido, J. Chem. Mater. 2008, 20, 1691.
(b) Sun, Y.; Duan, L.; Zhang, D.; Qiao, J.; Dong, G.; Wang, L.; Qiu, Y. Adv. Funct. Mater. 2011, 21, 1881.
[39] Sasabe, H.; Gonmori, E.; Chiba, T.; Li, Y. J.; Tanaka, D.; Su, S. J.; Takeda, T.; Pu, Y. J.; Nakayama, K. I.; Kido, J. Chem. Mater. 2008, 20, 5951.
[40] Park, I. S.; Komiyama, H.; Yasuda, T. Chem. Sci. 2017, 8, 953.
[41] Park, I. S.; Lee, J.; Yasuda, T. J. Mater. Chem. C 2016, 4, 7911.
[42] Komatsu, R.; Sasabe, H.; Seino, Y.; Nakao, K.; Kido, J. J. Mater. Chem. C 2016, 4, 2274.
[43] (a) Wettach, H.; Jester, S. S.; Colsmann, A.; Lemmer, U.; Rehmann, N.; Meerholz, K.; Höger, S. Synth. Met. 2010, 160, 691.
(b) Shan, T.; Liu, Y.; Tang, X.; Bai, Q.; Gao, Y.; Gao, Z.; Li, J.; Deng, J.; Yang, B.; Lu, P.; Ma, Y. ACS Appl. Mater. Interfaces 2016. 8, 28771
[44] Togashi, K.; Yasuda, T.; Adachi, C. Chem. Lett. 2013, 42, 383.
[45] Park, J. Y.; Kim, J. M.; Lee, H.; Ko, K. Y.; Yook, K. S.; Lee, J. Y.; Baek, Y. G. Thin Solid Films 2011, 519, 5917.
[46] Togashi, K.; Nomura, S.; Yokoyama, N.; Yasuda, T.; Adachi, C. J. Mater. Chem. 2012, 22, 20689.
[47] Takahashi, T.; Shizu, K.; Yasuda, T.; Togashi, K.; Adachi, C. Sci. Technol. Adv. Mater. 2014, 15, 34202.
[48] Kwon, D. Y.; Lee, G. H.; Kim, Y. S. J. Nanosci. Nanotechnol. 2015, 15, 7828.
[49] Tsai, W. L.; Huang, M. H.; Lee, W. K.; Hsu, Y. J.; Pan, K. C.; Huang, Y. H.; Ting, H. C.; Sarma, M.; Ho, Y. Y.; Hu, H. C.; Chen, C. C.; Lee, M. T.; Wong, K. T.; Wu, C. C. Chem. Commun. 2015, 51, 13662.
[50] Nasu, K.; Nakagawa, T.; Nomura, H.; Lin, C. J.; Cheng, C. H.; Tseng, M. R.; Yasuda, T.; Adachi, C. Chem. Commun. 2013, 49, 10385.
[51] Sun, J. W.; Baek, J. Y.; Kim, K. H.; Huh, J. S.; Kwon, S. K.; Kim, Y. H.; Kim, J. J. J. Mater. Chem. C 2017, 5, 1027.
[52] Rajamalli, P.; Senthilkumar, N.; Gandeepan, P.; Huang, P. Y.; Huang, M. J.; Ren, W. C. Z.; Yang, C. Y.; Chiu, M. J.; Chu, L. K.; Lin, H. W.; Cheng, C. H. J. Am. Chem. Soc. 2016, 138, 628.
[53] Rajamalli, P.; Senthilkumar, N.; Gandeepan, P.; Ren, W. C. Z.; Lin, H. W.; Cheng, C. H. J. Mater. Chem. C 2016, 4, 900.
[54] Masui, K.; Nakanotani, H.; Adachi, C. Org. Electron. 2013, 14, 2721.
[55] Sun, J. W.; Kim, K. H.; Moon, C. K.; Lee, J. H.; Kim, J. J. ACS Appl. Mater. Interfaces 2016, 8, 9806.
[56] Cho, Y. J.; Yook, K. S.; Lee, J. Y. Sci. Rep. 2015, 5, 7859.
[57] Lee, D. R.; Hwang, S. H.; Jeon, S. K.; Lee, C. W.; Lee, J. Y. Chem. Commun. 2015, 51, 8105.
[58] Kim, M.; Jeon, S. K.; Hwang, S. H.; Lee, S. S.; Yu, E.; Lee, J. Y. Chem. Commun 2016, 52, 339.
[59] Cho, Y. J.; Chin, B. D.; Jeon, S. K.; Lee, J. Y. Adv. Funct. Mater. 2015, 25, 6786.
[60] Cho, Y. J.; Jeon, S. K.; Lee, S. S.; Yu, E.; Lee, J. Y. Chem. Mater. 2016, 28, 5400.
[61] Park, I. S.; Lee, S. Y.; Adachi, C.; Yasuda, T. Adv. Funct. Mater. 2016, 26, 1813.
[62] Chen, D. Y.; Liu, W.; Zheng, C. J.; Wang, K.; Li, F.; Tao, S. L.; Ou, X. M.; Zhang, X. H. ACS Appl. Mater. Interfaces 2016, 8, 16791.
[63] Liu, W.; Zheng, C. J.; Wang, K.; Chen, Z.; Chen, D. Y.; Li, F.; Ou, X. M.; Dong, Y. P.; Zhang, X. H. ACS Appl. Mater. Interface 2015, 7, 18930.
[64] Pan, K. C.; Li, S. W.; Ho, Y. Y.; Shiu, Y. J.; Tsai, W. L.; Jiao, M.; Lee, W. K.; Wu, C. C.; Chung, C. L.; Chatterjee, T.; Li, Y. S.; Wong, K. T.; Hu, H. C.; Chen, C. C.; Lee, M. T. Adv. Funct. Mater. 2016, 26, 7560.
[65] Im, J. B.; Lampande, R.; Kim, G. H.; Lee, J. Y.; Kwon, J. H. J. Phys. Chem. C 2017, 121, 1305.
[66] Suzuki, K.; Kubo, S.; Shizu, K.; Fukushima, T.; Wakamiya, A.; Murata, Y.; Adachi, C.; Kaji, H. Angew. Chem. 2015, 127, 15446.
[67] Numata, M.; Yasuda, T.; Adachi, C. Chem. Commun. 2015, 51, 9443.
[68] Park, I. S.; Numata, M.; Adachi, C.; Yasuda, T. Bull. Chem. Soc. Jpn. 2016, 89, 375.
[69] Kitamoto, Y.; Namikawa, T.; Ikemizu, D.; Miyata, Y.; Suzuki, T.; Kita, H.; Sato, T.; Oi, S. J. Mater. Chem. C 2015, 3, 9122.
[70] Kitamoto, Y.; Namikawa, T.; Suzuki, T.; Miyata, Y.; Kita, H.; Sato, T.; Oi, S. Org. Electron. 2016, 34, 208.
[71] Kitamoto, Y.; Namikawa, T.; Suzuki, T.; Miyata, Y.; Kita, H.; Sato, T.; Oi, S. Tetrahedron Lett. 2016, 57, 4914.
[72] Zhang, Q.; Li, J.; Shizu, K.; Huang, S.; Hirata, S.; Miyazaki, H.; Adachi, C. J. Am. Chem. Soc. 2012, 134, 14706.
[73] Wu, S.; Aonuma, M.; Zhang, Q.; Huang, S.; Nakagawa, T.; Ku-wabara, K.; Adachi, C. J. Mater. Chem. C 2014, 2, 421.
[74] Li, J.; Liao, X.; Xu, H.; Li, L.; Zhang, J.; Wang, H.; Xu, B. Dyes Pigm. 2017, 140, 79.
[75] Liu, M.; Seino, Y.; Chen, D.; Inomata, S.; Su, S. J.; Sasabe, H.; Kido, J. Chem. Commun. 2015, 51, 16353.
[76] Lee, S. Y.; Adachi, C.; Yasuda, T. Adv. Mater. 2016, 28, 4626.
/
〈 |
|
〉 |