REVIEW

Recent Advances in Persulfates-Promoted Radical Reaction

  • Zhao Jingfeng ,
  • Duan Xinhua ,
  • Guo Li'na
Expand
  • Department of Chemistry, School of Science, Xi'an Jiaotong University, Xi'an 710049

Received date: 2017-05-02

  Revised date: 2017-06-22

  Online published: 2017-07-04

Supported by

Project supported by the Natural Science Basic Research Plan in Shaanxi Province (No.2016JZ002).

Abstract

As cheap, environmentally friendly, easily handled strong oxidants, persulfates have been widely used in organic synthesis. It is well known that persulfates may decompose to sulfate radical anions (SO4) under heating, light irradiation or transition-metal reductive conditions. Studies indicate that the sulfate radical anion is a powerful single-electron oxidant, which can oxidize a variety of neutral molecules and anions to give the corresponding radicals. The new generated radicals can further undergo a series of chemical transformations to provide structurally diverse and useful compounds. Recent radical reactions promoted by persulfates are summarized. The full text contains five parts. In the first and second parts, recent advance in the radical cyclization reactions and functionalization of C-H bonds promoted by persulfates is discussed. The third part introduced the persulfates-mediated photocatalytic reactions. The fourth part emphasized persulfates-promoted other free radical reactions. Finally, some perspectives on the future development of this chemistry are given.

Cite this article

Zhao Jingfeng , Duan Xinhua , Guo Li'na . Recent Advances in Persulfates-Promoted Radical Reaction[J]. Chinese Journal of Organic Chemistry, 2017 , 37(10) : 2498 -2511 . DOI: 10.6023/cjoc201705003

References

[1] (a) Recupero, F.; Punta, C. Chem. Rev. 2007, 107, 3800.
(b) Zard, S. Z. Chem. Soc. Rev. 2008, 37, 1603.
(c) Wille, U. Chem. Rev. 2013, 113, 813.
(d) Hoffmann, R. W. Chem. Soc. Rev. 2016, 45, 577.
(e) Staveness, D.; Bosque, I.; Stephenson, C. R. J. Acc. Chem. Res. 2016, 49, 2295.
(f) Matcha, K.; Narayan, R.; Antonchick, A. P. Angew. Chem., Int. Ed. 2013, 52, 7985.
(g) Tang, S.; Liu, K.; Liu, C.; Lei, A.-W. Chem. Soc. Rev. 2015, 44, 1070.
[2] (a) Caron, S.; Dugger, R. W.; Ruggeri, S. G.; Ragan, J. A.; Ripin, D. H. B. Chem. Rev. 2006, 106, 2943.
(b) Xu, G.; Chance, M. R. Chem. Rev. 2007, 107, 3514.
(c) Nicolaou, K. C.; Chen, J. S. Chem. Soc. Rev. 2009, 38, 2993.
(d) Yu, L.-F.; Hu, H.-N.; Nan, F.-J. J. Org. Chem. 2011, 76, 1448.
(e) Yin, J.; Kong, L.-L.; Gao, S.-H. Chin. J. Org. Chem. 2013, 33, 259(in Chinese). (尹军, 孔丽丽, 高栓虎, 有机化学, 2013, 33, 259.)
(f) Newcomb, E. T.; Knutson, P. C.; Pedersen, B. A.; Ferreira, E. M. J. Am. Chem. Soc. 2016, 138, 108.
[3] (a) Satoh, K.; Kamigaito, M. Chem. Rev. 2009, 109, 5120.
(b) Ratera, I.; Veciana, J. Chem. Soc. Rev. 2012, 41, 303.
(c) Tzirakis, M. D.; Orfanopoulos, M. Chem. Rev. 2013, 113, 5262.
(d) Zhang, N.; Samanta, S. R.; Rosen, B. M.; Percec, V. Chem. Rev. 2014, 114, 5848.
[4] For selected reviews, see:(a) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147.
(b) Bras, J. L.; Muzart, J. Chem. Rev. 2011, 111, 1170.
(c) Enthaler, S.; Company, A. Chem. Soc. Rev. 2011, 40, 4912.
(d) Sun, M.; Zhang, J.; Putaj, P.; Caps, V.; Lefebvre, F.; Pelletier, J.; Basset, J.-M. Chem. Rev. 2014, 114, 981.
(e) Xia, Y.; Wang, J. Chem. Soc. Rev. 2017, 46, 2306.
[5] (a) Liang, C.-J.; Bruell, C. J.; Marley, M. C.; Sperry, K. L. Soil Sediment Contam. 2003, 12, 207.
(b) House, D. A. Chem. Rev. 1962, 62, 185.
(c) Liang, C.-J.; Bruell, C. J.; Marley, M. C.; Sperry, K. L. Chemosphere 2004, 55, 1225.
(d) Wang, Y.-B.; Hong, C.-S. Water. Res. 1999, 33, 2031.
[6] (a) Minisci, F.; Bernardi, R.; Bertini, F.; Galli, R.; Perchinummo, M. Tetrahedron 1971, 27, 3575.
(b) Minisci, F.; Galli, R.; Cecere, M.; Malatesta, V.; Caronna, T. Tetrahedron Lett. 1968, 9, 5609.
(c) Minisci, F.; Vismara, E.; Fontana, F. Heterocycles 1989, 28, 489.
[7] (a) Lipshutz, B. H. Chem. Rev. 1986, 86, 795.
(b) Wong, H. N. C.; Yu, P.; Yick, C. Y. Pure Appl. Chem. 1999, 71, 1041.
(c) Rassu, G.; Zanardi, F.; Battistini, L.; Casiraghi, G. Chem. Soc. Rev. 2000, 29, 109.
(d) Chinchilla, R.; Najera, C.; Yus, M. Chem. Rev. 2004, 104, 2667.
(e) Lee, H.-K.; Chan, K.-F.; Hui, C.-W.; Yim, H.-K.; Wu, X.-W.; Wong, H. N. C. Pure Appl. Chem. 2005, 77, 139.
[8] (a) Chen, J.-R.; Yu, X.-Y.; Wen, J. Synthesis 2015, 47, 604.
(b) Song, R.-J.; Liu, Y.; Xie, Y.-X.; Li, J.-H. Synthesis 2015, 47, 1195.
(c) Li, C.-C.; Yang, S.-D. Org. Biomol. Chem. 2016, 14, 4365.
(d) Li, Y.-M.; Wei, X.-H.; Li, X.-A.; Yang, S.-D. Chem. Commun. 2013, 49, 11701.
(e) Qiu, J.; Zhang, R.-H. Org. Biomol. Chem. 2014, 12, 4329.
[9] (a) Wang, H.; Guo, L.-N.; Duan, X.-H. Chem. Commum. 2013, 49, 10370.
(b) Wang, H.; Guo, L.-N.; Duan, X.-H. Org. Lett. 2013, 15, 5254.
[10] (a) Yin, F.; Wang, X.-S. Org. Lett. 2014, 16, 1128.
(b) Wei, W.; Wen, J.-W.; Yang, D.-S.; Liu, X.-X.; Guo, M.-Y.; Dong, R.-M.; Wang, H. J. Org. Chem. 2014, 79, 4225.
[11] (a) Wei, W.; Wen, J.-W.; Yang, D.-S.; Du, J.; You, J.-M.; Wang, H. Green Chem. 2014, 16, 2988.
(b) Zhang, M.-Z.; Ji, P.-Y.; Liu, Y.-F.; Xu, J.-W.; Guo, C.-C. Adv. Synth. Catal. 2016, 358, 2976.
[12] (a) Li, Y.-M.; Sun, M.; Wang, H.-L.; Tian, Q.-P.; Yang, S.-D. Angew. Chem., Int. Ed. 2013, 52, 3972.
(b) Li, Y.-M.; Shen, Y.-H.; Chang, K.-J.; Yang, S.-D. Tetrahedron 2014, 70, 1991(in Chinese).
[13] (a) Guo, L.-N.; Deng, Z.-Q.; Wu, Y.; Hu, J. RSC Adv. 2016, 6, 27000.
(b) Li, Y.-H.; Wang, J.-J.; Wei, X.-H.; Yang, S.-D. Chin. J. Org. Chem. 2015, 35, 638(in Chinese). (李永红, 王君姣, 魏小红, 杨尚东, 有机化学, 2015, 35, 638.)
[14] (a) Laha, J. K.; Tummalapalli, K. S. S.; Gupta. A. Org. Lett. 2014, 16, 4392.
(b) Laha, J. K.; Tummalapalli, K. S. S.; Nair, A.; Patel, N. J. Org. Chem. 2015, 80, 11351.
(c) Laha, J. K.; Patel, K. V.; Tummalapalli, K. S. S.; Dayal, N. Chem. Commun. 2016, 52, 10245.
[15] Wang, S.; He, L.-Y.; Guo, L.-N. Synthesis 2015, 47, 3191.
[16] (a) Yang, H.; Duan, X.-H.; Zhao, J.-F.; Guo, L.-N. Org. Lett. 2015, 17, 1998.
(b) Guo, L.-N.; Gu, Y.-R.; Yang, H.; Hu, J. Org. Biomol. Chem. 2016, 14, 3098.
[17] Gao, P.; Wang, J.; Bai, Z.-J.; Shen, L.; Yan, Y.-Y.; Yang, D.-S.; Fan, M.-J.; Guan, Z.-H. Org. Lett. 2016, 18, 6074.
[18] Chen, M.-T.; Tang, X.-Y.; Shi, M. Org. Chem. Front. 2017, 4, 86.
[19] Liu, Y.-K.; Jiang, B.; Zhang, W.; Xu, Z.-Y. J. Org. Chem. 2013, 78, 966.
[20] (a) Shi, Z.-Z.; Glorius, F. Chem. Sci. 2013, 4, 829.
(b) Siddaraju, Y.; Lamani, M.; Prabhu, K. R. J. Org. Chem. 2014, 79, 3856.
[21] (a) More, N. Y.; Jeganmohan, M. Org. Lett. 2014, 16, 804.
(b) More, N. Y.; Jeganmohan, M. Org. Lett. 2015, 17, 3042.
[22] (a) Fujiwara, Y.; Domingo, V.; Seiple, I. B.; Gianatassio, R.; Bel, M. D.; Baran, P. S. J. Am. Chem. Soc. 2011, 133, 3292.
(b) Ilangovan, A.; Polu, A.; Satish, G. Org. Chem. Front. 2015, 2, 1616.
[23] (a) Wang, D.-G.; Deng, G.-J.; Chen, S.-Y.; Gong, H. Green Chem. 2016, 18, 5967.
(b) Mete, T. B.; Khopade, T. M.; Bhat, R. G. Tetrahedron Lett. 2017, 58, 415.
[24] (a) Yang, D.-S.; Yan, K.-L.; Wei, W.; Li, G.-Q.; Lu, S.-L.; Zhao, C.-X.; Tian, L.-J.; Wang, H. J. Org. Chem. 2015, 80, 11073.
(b) Yan, K.-L.; Yang, D.-S.; Wei, W.; Zhao, J.; Shuai, Y.-Y.; Tian, L.-J.; Wang, H. Org. Biomol. Chem. 2015, 13, 7323.
[25] (a) Li, X.; Che, X.; Chen, G.-H.; Zhang, J.; Yan, J.-L.; Zhang, Y.-F.; Zhang, L.-S.; Hsu, C.-P.; Gao, Y.-Q.; Shi, Z.-J. Org. Lett. 2016, 18, 1234.
(b) Li, X.; Shi, Z.-J. Org. Chem. Front. 2016, 3, 1326.
(c) Yuan, G.-Y.; Wang, F.; Stephenson, N. A.; Wang, L.; Rotstein, B. H.; Vasdev, N.; Tang, P.-P.; Liang, S. H. Chem. Commun. 2017, 53, 126.
(d) Kumar, P.; Guntreddi, T.; Singh, R.; Singh, K. N. Org. Chem. Front. 2017, 4, 147.
[26] (a) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322.
(b) Ravelli, D.; Protti, S.; Fagnoni, M. Chem. Rev. 2016, 116, 9850.
(c) Xuan, J.; Xiao, W.-J. Angew. Chem., Int. Ed. 2012, 51, 6828.
[27] (a) Devari, S.; Shah, B.-A. Chem. Commun. 2016, 52, 1490.
(b) Zhang, Y.-Q.; Teuscher, K. B.; Ji, H.-T. Chem. Sci. 2016, 7, 2111.
[28] (a) Zhao, Y.-T.; Huang, B.-B.; Yang, C.; Xia, W.-J. Org. Lett. 2016, 18, 3326.
(b) Meyer, A. U.; Alexander, W.; König, B. Angew. Chem., Int. Ed. 2017, 56, 409.
[29] (a) Guo, L.-N.; Wang, H.; Duan, X.-H. Org. Biomol. Chem. 2016, 14, 7380.
(b) Wang, H.; Guo, L.-N.; Wang, S.; Duan, X.-H. Org. Lett. 2015, 17, 3054.
(c) Wang, P.-F.; Feng, Y.-S.; Cheng, Z.-F. J. Org. Chem. 2015, 80, 9314.
(d) Wang, S.; Guo, L.-N.; Wang, H.; Duan, X.-H. Org. Lett. 2015, 17, 4798.
[30] (a) Nishimura, T.; Ohe, K.; Uemura, S. J. Am. Chem. Soc. 1999, 121, 2645.
(b) Nishimura, T.; Uemura, S. J. Am. Chem. Soc. 1999, 121, 11010.
[31] Sun, K.; Wang, X.; Lv, Y.-H.; Li, G.; Jiao, H.-Z.; Dai, C.-W.; Li, Y.-Y.; Zhang, C.; Liu, L. Chem. Commun. 2016, 52, 8471.

Outlines

/