REVIEW

Progress on the Synthesis and Applications of Cyanamides

  • Li Jihui ,
  • Li Zhengzhang ,
  • Zhang Yucang ,
  • Xu Wenrong ,
  • Xu Shuying
Expand
  • a Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources in Hainan University, Haikou 570228;
    b College of Materials and Chemical Engineering, Hainan University, Haikou 570228;
    c Inspection Quarantine Technology Center of Hainan Entry-Exit Inspection Quarantine Bureau, Haikou 570100

Received date: 2017-06-02

  Revised date: 2017-06-26

  Online published: 2017-07-14

Supported by

Project supported by the Natural Science Fundation of Hainan Province (Nos. 20162015, 217008).

Abstract

Cyanamides are an important class of fine chemicals containing amino and cyano functionalities, which have been widely used for the synthesis of pharmaceuticals, agricultural chemicals, health products and materials, and attracted considerable attention from both organic synthetic chemists and medicinal chemists. Great advances in the synthesis and transformations of cyanamides were made, a diversity of synthetic methods and transformations of cyanamides were developed in the past two decades. In this paper, various synthetic methods and reactions of cyanamides are introduced comprehensively, their characteristics, rules, advantages and disadvantages are also summarized and discussed for the development of new synthetic methods and reactions of cyanamides.

Cite this article

Li Jihui , Li Zhengzhang , Zhang Yucang , Xu Wenrong , Xu Shuying . Progress on the Synthesis and Applications of Cyanamides[J]. Chinese Journal of Organic Chemistry, 2017 , 37(8) : 1903 -1915 . DOI: 10.6023/cjoc201706003

References

[1] Zhu, Y.; Loso, M. R.; Watson, G. B.; Sparks, T. C.; Rogers, R. B.; Huang, J. Z.; Gerwick, B. C.; Babcock, J. M.; Kelley, D.; Hegde, V. B.; Nugent, B. M.; Renga, J. M.; Denholm, I.; Gorman, K.; DeBoer, G. J.; Hasler, J.; Meade, T.; Thomas, J. D. J. Agric. Food Chem. 2011, 59, 2950.
[2] (a) Lainé, D.; Palovich, M.; McCleland, B.; Petitjean, E.; Delhom, I.; Xie, H.; Deng, J.; Lin, G.; Davis, R.; Jolit, A.; Nevins, N.; Zhao, B.; Villa, J.; Schneck, J.; McDevitt, P.; Midgett, R.; Kmett, C.; Umbrecht, S.; Peck, B.; Davis, A. B.; Bettoun, D. ACS Med. Chem. Lett. 2011, 2, 142.
(b) Falgueyrat, J.-P.; Oballa, R. M.; Okamoto, O.; Wesolowski, G.; Aubin, Y.; Rydzewski, R. M.; Prasit, P.; Riendau, D.; Rodan, S. B.; Percival, M. D. J. Med. Chem. 2001, 44, 94.
[3] Feldman, P. L.; Brackeen, M. F.; Cowan, D. J.; Marron, B. E.; Schoenen, F. J.; Stafford, J. A.; Suh, E. M.; Domanico, P. L.; Rose, D.; Leesnitzer, M. A.; Brawley, E. S.; Strickland, A. B.; Vergese, M. W.; Connolly, K. M.; Bateman-Fite, R.; Noel, S. L.; Sekut, L.; Stimpson, S. A. J. Med. Chem. 1995, 38, 1505.
[4] (a) Larraufie, M. H.; Maestri, G.; Malacria, M.; Ollivier, C.; Fensterbank, L.; Lacote, E. Synthesis 2012, 44, 1279.
(b) Nekrasov, D. D. Russ. J. Org. Chem. 2004, 40, 1387.
[5] Crutchley, R. J. Coord. Chem. Rev. 2001, 219, 125.
[6] Boatright, L. G.; Mackay, J. S. US 2721786, 1955[Chem. Abstr. 1956, 50, 21846].
[7] (a) Nekrasov, D. D. Russ. J. Org. Chem. 2004, 40, 1387.
(b) Larraufie, M. H.; Maestri, G.; Malacria, M.; Ollivier, C.; Fensterbank, L.; Lacote, E. Synthesis 2012, 44, 1279.
[8] Braun, von J. Ber. Dtsch. Chem. Ges. 1907, 40, 3914.
[9] Morgan, T.; Ray, N. C.; Parry, D. M. Org. Lett. 2002, 4, 597.
[10] Nath, J.; Patel, B. K.; Jamir, L.; Sinha, U. B.; Satyanarayan, K. V. V. V. Green Chem. 2009, 11, 1503.
[11] Ramana, T.; Saha, P.; Das, M.; Punniyamurthy, T. Org. Lett. 2010, 12, 84.
[12] Sahoo, S. K.; Jamir, L.; Guin, S.; Patel, B. K. Adv. Synth. Catal. 2010, 352, 2538.
[13] Zhu, C.; Xia, J.-B.; Chen, C. Org. Lett. 2014, 16, 247.
[14] Lin, C.-C.; Hsieh, T.-H.; Liao, P.-Y.; Liao, Z.-Y.; Chang, C.-W.; Shih, Y.-C.; Yeh, W.-H.; Chien, T.-C. Org. Lett. 2014, 16, 892.
[15] Ayres, J. N.; Ling, K. B.; Morrill, L. C. Org. Lett. 2016, 18, 5528.
[16] Kamijo, S.; Jin, T.; Yamamoto, Y. J. Am. Chem. Soc. 2001, 123, 9453.
[17] Kamijo, S.; Yamamoto, Y. J. Am. Chem. Soc. 2002, 124, 11940.
[18] Kamijo, S.; Jin, T. Yamamoto, Y. Angew. Chem., Int. Ed. 2002, 41, 1780.
[19] Stolley, R. M.; Guo, W.; Louie, J. Org. Lett. 2012, 14, 322.
[20] Li, P.; Cheng, G.; Zhang, H.; Xu, X.; Gao, J.; Cui, X. J. Org. Chem. 2014, 79, 8156.
[21] Li, J.; Zheng, X.; Li, W.; Zhou, W.; Zhu W.; Zhang, Y. New J. Chem. 2016, 40, 77.
[22] (a) Reddy, N. L.; Fan, W.; Magar, S. S.; Perlman, M. E.; Yost, E.; Zhang, L.; Berlove, D.; Fischer, J. B.; Burke-Howie, K.; Wolcott, T.; Durant, G. J. J. Med. Chem. 1998, 41, 3298.
(b) Snider, B. B.; O'Hare, S. M. Tetrahedron Lett. 2001, 42, 2455.
(c) Basterfield, S.; Rodman, F. B. S.; Tomecko J. W. Can. J. Res. 2011, 17, 390.
[23] Giles, R. L.; Sullivan, J. D.; Steiner, A. M.; Looper, R. E. Angew. Chem., Int. Ed. 2009, 48, 3116.
[24] Giles, R. L.; Nkansah, R. A.; Looper, R. E. J. Org. Chem. 2010, 75, 261.
[25] Lou, Z.; Wu, X.; Yang, H.; Zhu, C.; Fu, H. Adv. Synth. Catal. 2015, 357, 3961.
[26] Rassadin, V. A.; Zimin, D. P.; Raskil'dina, G. Z.; Ivanov, A. Y.; Boyarskiy, V. P.; Zlotskiib S. S.; Kukushkin, V. Y. Green Chem. 2016, 18, 6630.
[27] Larraufie, M.-H.; Ollivier, C.; Fensterbank, L.; Malacria, M.; Lacte, E. Angew. Chem., Int. Ed. 2010, 49, 2178.
[28] Maestri, G.; Larraufie, M.-H.; Ollivier, C.; Malacria, M.; Fensterbank, L.; Lacôte, E. Org. Lett. 2012, 14, 5538.
[29] Li, J.; Neuville, L. Org. Lett. 2013, 15, 6124.
[30] Tran, L. Q.; Li, J.; Neuville, L. J. Org. Chem. 2015, 80, 6102.
[31] Li, J.; Wang, H.; Hou, Y.; Yu, W.; Xu, S.; Zhang, Y. Eur. J. Org. Chem. 2016, 2388.
[32] Vollhardt, K. P. C.; Naiman, A. US 4328343, 1982[Chem. Abstr 1978, 90, 186806].
[33] Boñaga, L. V. R.; Zhang H.-C.; Maryanoff B. E. Chem. Commun. 2004, 2394.
[34] (a) Stolley, R. M.; Maczka, M. T.; Louie J. Eur. J. Org. Chem. 2011, 3815.
(b) Kumar, P.; Prescher, S.; Louie, J. Angew. Chem., Int. Ed. 2011, 50, 10694.
[35] Wang, C.; Wang, D.; Xu, F.; Pan, B.; Wan, B. J. Org. Chem. 2013, 78, 3065.
[36] Lane, T. K.; D'Souza, B. R.; Louie, J. J. Org. Chem. 2012, 77, 7555.
[37] Lane, T. K.; Nguyen, M. H.; D'Souza, B. R.; Spahn, N. A.; Louie, J. Chem. Commun. 2013, 49, 7735.
[38] Hashimoto, T.; Ishii, S.; Yano, R.; Miura, H.; Sakata, K.; Takeuchi, R. Adv. Synth. Catal. 2015, 357, 3901.
[39] Onodera, G.; Shimizu, Y.; Kimura, J.; Kobayashi, J.; Ebihara, Y.; Kondo, K.; Sakata, K.; Takeuchi, R. J. Am. Chem. Soc. 2012, 134, 10515.
[40] Ye, F.; Haddad, M.; Ratovelomanana-Vidal, V.; Michelet, V. Org. Lett. 2017, 19, 1104.
[41] Rassadin, V. A.; Boyarskiy, V. P.; Kukushkin Y. V. Org. Lett. 2015, 17, 3502.
[42] (a) Hughes, T. V.; Hammond, S. D.; Cava, M. P. J. Org. Chem. 1998, 63, 401.
(b) Hughes, T. V.; Cava, M. P. J. Org. Chem. 1999, 64, 313.
[43] Wu, Y.-Q.; Limburg, D. C.; Wilkinson, D. E.; Hamilton, G. S. Org. Lett. 2000, 2, 795.
[44] Anbarasan, P.; Neumann, H.; Beller, M. Chem.-Eur. J. 2010, 16, 4725.
[45] (a) Anbarasan, P.; Neumann, H.; Beller, M. Angew. Chem. Int. Ed. 2011, 50, 519.
(b) Anbarasan, P.; Neumann, H.; Beller, M. Chem.-Eur. J. 2011, 17, 4217.
(c) Cai, Y.; Qian, X.; Rérat, A.; Auffrant, A.; Gosmini C. Adv. Synth. Catal. 2015, 357, 3419.
(d) Yang, Y.; Zhang, Y.; Wang, J. Org. Lett. 2011, 13, 5608.
(e) Gong, T.-J.; Xiao, B.; Cheng, W.-M.; Su, W.; Xu, J.; Liu, Z.-J.; Liu, L.; Fu, Y. J. Am. Chem. Soc. 2013, 135, 10630.
(f) Chaitanya, M.; Yadagiri, D.; Anbarasan, P. Org. Lett. 2013, 15, 4960.
(g) Gu, L.-J.; Jin, C.; Wang, R.; Ding, H.-Y. ChemCatChem 2014, 6, 1225.
(h) Mishra, N. K.; Jeong, T.; Sharma, S.; Shin, Y.; Han, S.; Park, J.; Oh, J. S.; Kwak, J. H.; Jung, Y. H.; Kima, I. S. Adv. Synth. Catal. 2015, 357, 1293.
(i) Chaitanya, M.; Anbarasan, P. J. Org. Chem. 2015, 80, 3695.
(j) Zhu, X.; Shen, X.J.; Tian, Z.-Y.; Lu, S.; Tian, L.-L.; Liu, W.-B.; Song, B.; Hao, X.-Q. J. Org. Chem. 2017, 82, 6022.
[46] Fukumoto, K.; Oya, T.; Itazaki, M.; Nakazawa, H. J. Am. Chem. Soc. 2009, 131, 38.
[47] Liao, Z.-Y.; Liao, P.-Y.; Chien, T.-C. Chem. Commun. 2016, 52, 14404.
[48] Rao, B.; Zeng, X. Org. Lett. 2014, 16, 314.
[49] Pan, Z.; Pound, S. M.; Rondla, N. R.; Douglas, C. J. Angew. Chem., Int. Ed. 2014, 53, 5170.
[50] Miyazaki, Y.; Ohta, N.; Semba, K.; Nakao, Y. J. Am. Chem. Soc. 2014, 136, 3732.
[51] Wang, R.; Falck, J. R. Chem. Commun. 2013, 49, 6516.
[52] (a) Servais, A.; Azzouz, M.; Lopes, D.; Courillon, C.; Malacria, M. Angew. Chem., Int. Ed. 2007, 46, 576.
(b) Beaume, A.; Christine Courillon, C.; Derat, E.; Malacria, M. Chem.-Eur. J. 2008, 14, 1238.
[53] Larrafie, M.-H.; Courillon, C.; Ollivier, C.; Lacôte, E.; Malacria, M.; Fensterbank, L. J. Am. Chem. Soc. 2010, 132, 4381.
[54] Sävmarker, J.; Rydfjord, J.; Gising, J.; Odell, L. R.; Larhed, M. Org. Lett. 2012, 14, 2394.
[55] Rydfjord, J.; Svensson, F.; Trejos, A.; Söjberg, P. J. R.; Sköld, C.; Sävmarker, J.; Odell, L. R.; Larhed, M. Chem.-Eur. J. 2013, 19, 13803.
[56] Guin, S.; Rout, S. K.; Gogoi, A.; Ali, W.; Patel, B. K. Adv. Synth. Catal. 2014, 46, 2559.

Outlines

/