Chinese Journal of Organic Chemistry >
Progresses on the Application of Stable Borane Adducts in the Synthesis of Organoborons
Received date: 2017-05-23
Revised date: 2017-07-18
Online published: 2017-08-09
Supported by
Project supported by the National Natural Science Foundation of China (Nos.21625204,21421062,21290182),the National Basic Research Program of China (973 Program,No.2012CB821600),the "111" Project of the Ministry of Education of China (No.B06005),and the National Program for Support of Top-notch Young Professionals.
Organoboron compounds are wildly used in organic synthesis, materials science, life and health science, etc. The development of synthetic methodologies of organoborons has therefore gained intense attention nowadays. Typically, Bis(pinacolato)diboron (B2Pin2), pinacolborane (HBpin) and catecholatoborane (HBCat) are predominantly used as boron reagents in catalytic C-B bond forming reactions. Different from the above traditional boron reagents, borane adducts with strong Lewis bases, such as amines, phosphines, and N-heterocyclic carbenes, are promising boron reagents because of their readily accessibility, relatively high stability, and easy operation. Moreover, the different chemical properties of these stable borane adducts towards the traditional boron reagents provide possibilities for development of new C-B bond formation reactions. The applications of the stable borane adducts as terminal boron reagents in hydroboration of alkenes or alkynes, C-H bond borylation, carbene insertion into B-H bonds, cascade cyclization initiated by boryl radicals and substitutions, which provide new methods for the preparation of organoborons are reviewed in this paper.
Yang Jimin , Li Ziqi , Zhu Shoufei . Progresses on the Application of Stable Borane Adducts in the Synthesis of Organoborons[J]. Chinese Journal of Organic Chemistry, 2017 , 37(10) : 2481 -2497 . DOI: 10.6023/cjoc201705034
[1] (a) Carboni, B.; Monnier, L. Tetrahedron 1999, 55, 1197.
(b) Staubitz, A.; Robertson, A. P. M.; Sloan, M. E.; Manners, I. Chem. Rev. 2010, 110, 4023.
(c) Staubitz, A.; Robertson, A. P. M.; Manners, I. Chem. Rev. 2010, 110, 4079.
[2] For a recent review, see:(a) Yang, X.; Xie, Z.; He, J.; Yu, L. Chin. J. Org. Chem. 2015, 35, 603(in Chinese). (阳香华, 谢珍茗, 何军, 余林, 有机化学, 2015, 35, 603.) For selected examples, see:
(b) Blaquiere, N.; Diallo-Garcia, S.; Gorelsky, S. I.; Black, D. A.; Fagnou, K. J. Am. Chem. Soc. 2008, 130, 14034.
(c) Shao, Z.; Fu, S.; Wei, M.; Zhou, S.; Liu, Q. Angew. Chem., Int. Ed. 2016, 55, 14653.
(d) Zhou, Q.; Zhang, L.; Meng, W.; Feng, X.; Yang, J.; Du, H. Org. Lett. 2016, 18, 5189.
(e) Li, S.; Meng, L.; Du, H. Org. Lett. 2017, 19, 2604.
[3] Curran, D. P.; Solovyev, A.; Brahmi, M. M.; Fensterbank, L.; Malacria, M.; Lacôte, E. Angew. Chem., Int. Ed. 2011, 50, 10294.
[4] For selected reviews, see:(a) Ramachandran, P. V., Brown, H. C. Organoboranes for Syntheses, ACS Symposium Series 783, American Chemical Society, Washington, DC, 2001.
(b) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
(c) Braunschweig, H.; Dewhurst, R. D.; Schneider, A. Chem. Rev. 2010, 110, 3924.
(d) Jäkle, F. Chem. Rev. 2010, 110, 3985.
(e) Dembitsky, V. M.; Quntar, A. A. A. A.; Srebnik, M. Chem. Rev. 2011, 111, 209.
(f) Jana, R.; Pathak, T. P.; Sigman, M. S. Chem. Rev. 2011, 111, 1417.
(g) Leonori, D.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2015, 54, 1082.
[5] For reviews, see:(a) Burgess, K.; Ohlmeyer, M. J. Chem. Rev. 1991, 91, 1179.
(b) Beletskaya, I.; Moberg, C. Chem. Rev. 2006, 106, 2320.
(c) Mkhalid, I. A. I.; Barnard, J. H.; Marder, T. B.; Murphy, J. M.; Hartwig, J. F. Chem. Rev. 2010, 110, 890.
(d) Hartwig, J. F. Chem. Soc. Rev. 2011, 40, 1992.
(e) Ros, A.; Fernández, R.; Lassaletta, J. M. Chem. Soc. Rev. 2014, 43, 3229.
[6] (a) Welch, C. N.; Shore, G. S. Inorg. Chem. 1968, 7, 225.
(b) Brown, H. C.; Gupta, S. K. J. Am. Chem. Soc. 1975, 97, 5249.
[7] Zaidlewicz, M.; Brown, H. C.; Siebert, W. Advances in Boron Chemistry, The Royal Society of Chemistry, Cambridge, 1997, 171.
[8] (a) Schaeffer, G. W.; Anderson, E. R. J. Am. Chem. Soc. 1949, 71, 2143.
(b) Nainan, K. C.; Ryschkewitsch, G. E. Inorg. Chem. 1969, 8, 2671.
[9] (a) Baldwin, A. R.; Washburn, R. M. J. Org. Chem. 1961, 26, 3549.
(b) Brahmi, M. M.; Monot, J.; Murr, M, D.; Curran, D. P.; Fensterbank, L.; Lacôte, E.; Malacria, M. J. Org. Chem. 2010, 75, 6983.
[10] (a) Brown, H. C.; Chandrasekharan, J. J. Am. Chem. Soc. 1984, 106, 1863.
(b) Kanth, J. V. B. Aldrichim. Acta 2002, 35, 57.
[11] Scheideman, M.; Shapland, P.; Vedejs, E. J. Am. Chem. Soc. 2003, 125, 10502.
[12] Beak, P. Acc. Chem. Res. 1992, 25, 215.
[13] Clay, J. M.; Vedejs, E. J. Am. Chem. Soc. 2005, 127, 5766.
[14] (a) Shapland, P.; Vedejs, E. J. Org. Chem. 2006, 71, 6666.
(b) Karatjas, A. G.; Vedejs, E. J. Org. Chem. 2008, 73, 9508.
(c) Scheideman, M.; Wang, G.; Vedejs, E. J. Am. Chem. Soc. 2008, 130, 8669.
[15] Pronin, S. V.; Tabor, M. G.; Jansen, D. J.; Shenvi, R. A. J. Am. Chem. Soc. 2012, 134, 2012.
[16] Tabor, M. G.; Shenvi, R. A. Org. Lett. 2015, 17, 5776.
[17] Prokofjevs, A.; Boussonnière, A.; Li, L.; Bonin, H.; Lacôte, E.; Curran, D. P.; Vedejs, E. J. Am. Chem. Soc. 2012, 134, 12281.
[18] Pan, X.; Boussonnière, A.; Curran, D. P. J. Am. Chem. Soc. 2013, 135, 14433.
[19] Monot, J.; Solovyev, A.; Bonin-Dubarle, H.; Derat, É.; Curran, D. P.; Robert, M.; Fensterbank, L.; Malacria, M.; Lacôte, E. Angew. Chem., Int. Ed. 2010, 49, 9166.
[20] Boussonnière, A.; Pan, X.; Geib, S. J.; Curran, D. P. Organometallics 2013, 32, 7445.
[21] Sewell, L. J.; Chaplin, A. B.; Weller, A. S. Dalton Trans. 2011, 40, 7499.
[22] Johnson, H. C.; Torry-Harris, R.; Ortega, L.; Theron, R.; McIndoe, J. S.; Weller, A. S. Catal. Sci. Technol. 2014, 4, 3486.
[23] Toure, M.; Chuzel, O.; Parrain, J. L. J. Am. Chem. Soc. 2012, 134, 17892.
[24] Wang, Q.; Motika, S. E.; Akhmedov, N. G.; Petersen, J. L.; Shi, X. Angew. Chem., Int. Ed. 2014, 53, 5418.
[25] Motika, S. E.; Wang, Q.; Akhmedov, N. G.; Wojtas, L.; Shi, X. Angew. Chem., Int. Ed. 2016, 55, 11582.
[26] Taniguchi, T.; Curran, D. P. Angew. Chem., Int. Ed. 2014, 53, 13150.
[27] Nerkar, S.; Curran, D. P. Org. Lett. 2015, 17, 3394.
[28] McFadden, T. R.; Fang, C.; Geib, S. J.; Merling, E.; Liu, P.; Curran D. P. J. Am. Chem. Soc. 2017, 139, 1726.
[29] De Vries, T. S.; Prokofjevs, A.; Harvey, J. N.; Vedejs, E. J. Am. Chem. Soc. 2009, 131, 14679.
[30] Farrell, J. M.; Stephan, D. W. Angew. Chem., Int. Ed. 2015, 54, 5214.
[31] Prokofjevs, A.; Vedejs, E. J. Am. Chem. Soc. 2011, 133, 20056.
[32] Prokofjevs, A.; Jermaks, J.; Borovika, A.; Kampf, J. W.; Vedejs, E. Organometallics 2013, 32, 6701.
[33] Cazorla, C.; De Vries, T. S.; Vedejs, E. Org. Lett. 2013, 15, 984.
[34] (a) Doyle, M. P.; McKervey, M. A.; Ye, T. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds, Wiley, New York, 1998.
(b) Dorwald, F. Z. Metal Carbenes in Organic Synthesis, Wiley-VCH, Weinheim, Germany, 1999.
(c) Doyle, M. P. Chem. Rev. 1986, 86, 919.
(d) Doyle, M. P.; Forbes, D. C. Chem. Rev. 1998, 98, 911.
(e) Zhu, S.-F.; Zhou, Q.-L. Nat. Sci. Rev. 2014, 1, 580.
(f) Ford, A.; Miel, H.; Ring, A.; Slattery, C. N.; Maguire, A. R.; McKervey, M. A. Chem. Rev. 2015, 115, 9981.
[35] Bedel, C.; Foucaud, A. Tetrahedron Lett. 1993, 34, 311.
[36] Monnier, L.; Delcros, J.-G.; Carboni, B. Tetrahedron 2000, 56, 6039.
[37] Imamoto, T.; Yamanoi, Y. Chem. Lett. 1996, 25, 705.
[38] Cheng, Q.-Q.; Zhu, S.-F.; Zhang, Y.-Z.; Xie, X.-L.; Zhou, Q.-L. J. Am. Chem. Soc. 2013, 135, 14094.
[39] Cheng, Q.-Q.; Xu, H.; Zhu, S.-F.; Zhou, Q.-L. Acta Chim. Sinica 2015, 73, 326(in Chinese). (程清卿, 徐唤, 朱守非, 周其林, 化学学报, 2015, 73, 326.)
[40] Li, X.; Curran, D. P. J. Am. Chem. Soc. 2013, 135, 12076.
[41] Allen, T. H.; Curran, D. P. J. Org. Chem. 2016, 81, 2094.
[42] Chen, D.; Zhang, X.; Qi, W.-Y.; Xu, B.; Xu, M.-H. J. Am. Chem. Soc. 2015, 137, 5268.
[43] Hyde, S.; Veliks, J.; Liégault, B.; Grassi, D.; Taillefer, M.; Gouverneur, V. Angew. Chem., Int. Ed. 2016, 55, 3785.
[44] Yang, J.-M.; Li, Z.-Q.; Li, M.-L.; He, Q.; Zhu, S.-F.; Zhou, Q.-L. J. Am. Chem. Soc. 2017, 139, 3784.
[45] For recent examples see:(a) Aramaki, Y.; Omiya, H.; Yamashita, M.; Nakabayashi, K.; Ohkoshi, S.; Nozaki, K. J. Am. Chem. Soc. 2012, 134, 19989.
(b) Rosenthal, A. J.; Devillard, M.; Miqueu, K.; Bouhadir, G.; Bourissou, D. Angew. Chem., Int. Ed. 2015, 54, 9198.
(c) Silva Valverde, M. F.; Schweyen, P.; Gisinger, D.; Bannenberg, T.; Freytag, M.; Kleeberg, C.; Tamm, M. Angew. Chem., Int. Ed. 2017, 56, 1135.
[46] (a) Roberts, B. P. Chem. Soc. Rev. 1999, 28, 25.
(b) Rablen, P. R. J. Am. Chem. Soc. 1997, 119, 8350.
(c) Walton, J. C. Angew. Chem., Int. Ed. 2009, 48, 1726.
(d) Lalevée, J.; Blanchard, N.; Chany, A.-C.; Tehfe, M.-A.; Allonas, X.; Fouassier, J.-P. J. Phys. Org. Chem. 2009, 22, 986.
[47] (a) Barton, D. H. R.; Jacob, M. Tetrahedron Lett. 1998, 39, 1331.
(b) Ueng, S.-H.; Brahmi, M. M.; Derat, É.; Fensterbank, L.; Lacôte, E.; Malacria, M.; Curran, D. P. J. Am. Chem. Soc. 2008, 130, 10082.
[48] (a) Pan, X.; Lalevée, J.; Lacôte, E.; Curran, D. P. Adv. Synth. Catal. 2013, 355, 3522.
(b) Ueng, S.-H.; Fensterbank, L.; Lacôte, E.; Malacria, M.; Curran, D. P. Org. Biomol. Chem. 2011, 9, 3415.
(c) Pan, X.; Lacôte, E.; Lalevée, J.; Curran, D. P. J. Am. Chem. Soc. 2012, 134, 5669.
[49] (a) Telitel, S.; Schweizer, S.; Morlet-Savary, F.; Graff, B.; Tschamber, T.; Blanchard, N.; Fouassier, J. P.; Lelli, M.; Lacôte, E.; Lalevée, J. Macromolecules 2013, 46, 43.
(b) Lalevée, J.; Telitel, S.; Tehfe, M. A.; Fouassier, J. P.; Curran, D. P.; Lacôte, E. Angew. Chem., Int. Ed. 2012, 51, 5958.
[50] (a) Pan, X.; Vallet, A.-L.; Schweizer, S.; Dahbi, K.; Delpech, B.; Blanchard, N.; Graff, B.; Geib, S. J.; Curran, D. P.; Lalevée, J.; Lacôte, E. J. Am. Chem. Soc. 2013, 135, 10484.
(b) Telitel, S.; Vallet, A.-L.; Schweizer, S.; Delpech, B.; Blanchard, N.; Morlet-Savary, F.; Graff, B.; Curran, D. P.; Robert, M.; Lacôte, E.; Lalevée, J. J. Am. Chem. Soc. 2013, 135, 16938.
[51] Watanabe, T.; Hirose, D.; Curran, D. P.; Taniguchi, T. Chem.-Eur. J. 2017, 23, 5404.
[52] Ren, S.-C.; Zhang, F.-L.; Qi, J.; Huang, Y.-S.; Xu, A.-Q.; Yan, H.-Y.; Wang, Y.-F. J. Am. Chem. Soc. 2017, 139, 6050.
[53] Solovyev, A.; Chu, Q.; Geib, S. J.; Fensterbank, L.; Malacria, M.; Lacôte, E.; Curran, D. P. J. Am. Chem. Soc. 2010, 132, 15072.
[54] Merling, E.; Lamm, V.; Geib, S. J.; Lacôte, E.; Curran, D. P. Org. Lett. 2012, 14, 2690.
/
〈 |
|
〉 |