Articles

Syntheses and Photovoltaic Performance of N-Phenylcarbazole Sensitizers with Benzothiadiazole Auxiliary Acceptor

  • Han Liang ,
  • Wu Liang ,
  • Tong Yongzheng ,
  • Zu Xiaoyan ,
  • Jiang Shaoliang
Expand
  • a College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310017;
    b College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310017

Received date: 2017-04-27

  Revised date: 2017-07-13

  Online published: 2017-08-11

Supported by

Project supported by the National Natural Science Foundation of China (No. 21406202).

Abstract

Four N-phenylcarbazole sensitizers were designed and synthesized with N-phenylcarbazole as the electron donor, benzothiadiazole as the auxiliary acceptor, thiophene or benzene as π bridge, cyanoacetic acid or rhodanine acetic acid as the an-choring acceptor. The spectral properties and photovoltaic performance of the sensitizers were investigated. Though with short maximum absorption wavelength and low molar extinction coefficient, dyes with cyanoacetic acid acceptor show higher electron injection efficiency than dyes with rhodanine acetic acid acceptor, and hence obtain superior photocurrent and photovoltage. Dyes with benzene bridge exhibit higher photocurrent and photovoltage than dyes with thiophene bridge. Therefore, among four sensitizers, dye with benzene bridge and cyanoacetic acid acceptor obtains better photoelectric conversion efficiency of 5.28% (JSC=9.14 mA/cm2, VOC=0.74 V, FF=0.78).

Cite this article

Han Liang , Wu Liang , Tong Yongzheng , Zu Xiaoyan , Jiang Shaoliang . Syntheses and Photovoltaic Performance of N-Phenylcarbazole Sensitizers with Benzothiadiazole Auxiliary Acceptor[J]. Chinese Journal of Organic Chemistry, 2017 , 37(11) : 2940 -2947 . DOI: 10.6023/cjoc201704045

References

[1] Al-Alwani, M. A. M.; Mohamad, A. B.; Ludin, N. A.; Kadhum, A. A. H.; Sopian, K. Renewable Sustainable Energy Rev. 2016, 65, 183.
[2] Gu, C.-Z.; Meng, S.-X.; Feng, Y.-Q. Chin. J. Org. Chem. 2015, 35, 1229(in Chinese). (顾承志, 孟舒献, 冯亚青, 有机化学, 2015, 35, 1229.)
[3] Hafeldt, A.; Boschloo, G.; Sun, L. C.; Kloo, L.; Pettersson, H. Chem. Rev. 2010, 110, 6595.
[4] Ma, Y.-Z.; Zheng, L.-L.; Zhang, L.-P.; Chen, Z.-J.; Wang, S.-F.; Qu, B.; Xiao, L.-X.; Gong, Q.-H. Acta Chim. Sinica 2015, 73, 257(in Chinese). (马英壮, 郑灵灵, 张立培, 陈志坚, 王树峰, 曲波, 肖立新, 龚旗煌, 化学学报, 2015, 73, 257.)
[5] Chaurasia, S.; Lin, J. T. Chem. Rec. 2016, 16, 1311.
[6] Rong, Y.-G.; Mei, A.-Y.; Liu, L.-F.; Li, X.; Han, H.-W. Acta Chim. Sinica 2015, 73, 237(in Chinese). (荣耀光, 梅安意, 刘林峰, 李雄, 韩宏伟, 化学学报, 2015, 73, 237.)
[7] Ye, T.-L.; Wang, J.-H.; Dong, G.-H.; Jiang, Y.-X.; Feng, C.; Yang, Y.-L. Chin. J. Chem. 2016, 34, 747.
[8] Han, R.-B.; Lu, S.; Wang, Y.-J.; Zhang, X.-H.; Wu, Q.; He, T. Acta Chim. Sinica 2015, 73, 1061(in Chinese). (韩若冰, 芦姗, 王艳杰, 张雪华, 吴强, 贺涛, 化学学报, 2015, 73, 1061.)
[9] (a) Xie, Y.; Tang, Y.; Wu, W.; Wang, Y.; Liu, J.; Li, X.; Tian, H.; Zhu, W. J. Am. Chem. Soc. 2015, 137, 14055.
(b) Tang, Y.; Wang, Y.; Li, X.; Ågren, H.; Zhu, W.; Xie, Y. ACS Appl. Mater. Interfaces 2015, 7, 27976.
(c) Wei, T.; Sun, X.; Li, X.; Ågren, H.; Xie, Y. ACS Appl. Mater. Interfaces 2015, 7, 21956.
(d) Wang, Y.; Chen, B.; Wu, W.; Li, X.; Zhu, W.; Tian, H.; Xie, Y. Angew. Chem., Int. Ed. 2014, 53, 10779.
(e) Wang, Y.; Li, X.; Liu, B.; Wu, W.; Zhu, W.; Xie, Y. RSC Adv. 2013, 3, 14780.
[10] Chaurasia, S.; Liang, C. J.; Yen, Y. S.; Lin, J. T. J. Mater. Chem. C 2015, 3, 9765.
[11] Kim, B.; Chung, K.; Kim, J. Chem. Eur. J. 2013, 19, 5220
[12] Lee, C. P.; Lin, R. Y. Y.; Lin, L. Y.; Li, C. T.; Chu, T. C.; Sun, S. S.; Lin, J. T.; Ho, K. C. RSC Adv. 2015, 5, 23810.
[13] Liu, Y.; He, J.; Han, L.; Gao, J. R. J. Photochem. Photobiol. A 2017, 332, 283.
[14] Li, T.; Gao, J. R.; Cui, Y. H.; Zhong, C. J.; Ye, Q; Han, L. J. Photochem. Photobiol. A 2015, 303, 91.
[15] Wang, Y.; Zheng, Z.; Li, T.; Robertson, N.; Xiang, H.; Wu, W.; Hua, J.; Zhu, W. H.; Tian, H. ACS Appl. Mater. Interfaces 2016, 8, 31016.
[16] Han, L.; Zhao, J.; Wang, B.; Jiang, S. L. J. Photochem. Photo-biol. A 2016, 326, 1.
[17] Eom, Y. K.; Hong, J. Y.; Kim, J.; Kim, H. K. Dyes Pigm. 2017, 136, 496.
[18] Huang, H. L.; Chen, H. J.; Long, J.; Wang, G.; Tan, S. T. J. Power Sources 2016, 326, 438.
[19] Wu, F.; Liu, H.-T.; Lee, L. T. L.; Chen, T.; Wang, M.; Zhu, L.-N. Chin. J. Chem. 2015, 33, 925.
[20] Mishra, A.; Fischer, M. K. R.; Bäuerle P. Angew. Chem., Int. Ed. 2009, 48, 2474.
[21] Wu, Y. Z.; Zhu, W. H. Chem. Soc. Rev. 2013, 42, 2039.
[22] Wu, Y.; Zhu, W.; Zakeeruddin, S. M.; Grätzel, M. ACS Appl. Mater. Interfaces 2015, 7, 9307.
[23] Pei, K.; Wu, Y.; Wu, W.; Zhang, Q.; Chen, B.; Tian, H.; Zhu, W. Chem. Eur. J. 2012, 18, 8190.
[24] Chai, Z.; Wan, S.; Zhong, C.; Xu, T.; Fang, M.; Wang, J.; Xie, Y.; Zhang, Y.; Mei, A.; Han, H.; Peng, Q.; Li, Q.; Li, Z. ACS Appl. Mater. Interfaces 2016, 8, 28652.
[25] Soman, S.; Rahim, M. A.; Lingamoorthy, S.; Suresh, C. H.; Das, S. Phys. Chem. Chem. Phys. 2015, 17, 23095.
[26] Watanabe, M.; Nishiyama, M.; Yamamoto, T.; Koie, Y. Tetra-hedron Lett. 2000, 41, 481.
[27] Liu, Y.; Wang, H.-Y.; Chen, G.; Xu, X.-P.; Ji, S.-J. Aust. J. Chem. 2009, 62, 934 Keerthi, A.; Sriramulu, D.; Liu, Y.; Timothy C. T. Y.; Wang, Q.; Valiyaveettil S. Dyes Pigm. 2013, 99, 787.

Outlines

/