Reviews

Recent Advances in Closed-Loop and Smart Insulin Delivery Systems

  • Li Zhenyi ,
  • Hu Xiaoyu ,
  • Jiang Juli ,
  • Zhang Dongmei ,
  • Xiao Shoujun ,
  • Lin Chen ,
  • Wang Leyong
Expand
  • a School of Chemistry and Chmeical Engineering, Nanjing University, Nanjing 210023;
    b State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023

Received date: 2017-08-31

  Revised date: 2017-09-19

  Online published: 2017-09-26

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21672102, 21572101).

Abstract

Insulin is a commonly prescribed drug for the treatment of type I and type Ⅱ diabetes. As for the efficiency in controlling blood glucose level, insulin therapy is one of the most effective treatments for diabetes. The current administration route of insulin is mainly through subcutaneous injection, which leads to many undesirable side effects such as pain, local tissue necrosis or infection, and nerve damage. Recently, various closed-loop and smart insulin delivery systems have been developed based on the emerging nanotechnologies. Recent progress in the construction of closed-loop and smart insulin delivery system, which mainly focuses on the response mechanism, different strategies for fabricating the carrier matrix, and the regulation principle of the smart insulin release is described. Advantages and drawbacks of the current insulin delivery systems are also discussed, along with the opportunities and challenges in future.

Cite this article

Li Zhenyi , Hu Xiaoyu , Jiang Juli , Zhang Dongmei , Xiao Shoujun , Lin Chen , Wang Leyong . Recent Advances in Closed-Loop and Smart Insulin Delivery Systems[J]. Chinese Journal of Organic Chemistry, 2018 , 38(1) : 29 -39 . DOI: 10.6023/cjoc201708065

References

[1] (a) Stumvoll, M.; Goldstein, B. J.; van Haeften, T. W. Lancet 2005, 365, 1333.
(b) Atkinson, M. A.; Eisenbarth, G. S. Lancet 2001, 358, 221.
[2] (a) Bach, J. F. Endocr. Rev. 1994, 15, 516.
(b) Eisenbarth, G. S.; Flier, J. S.; Cahill, G. N. Engl. J. Med. 1986, 314, 1360.
(c) Tisch, R.; McDevitt, H. Cell 1996, 85, 291.
[3] (a) Concannon, P.; Rich, S. S.; Nepom, G. T. N. Engl. J. Med. 2009, 360, 1646.
(b) Daneman, D. Lancet 2006, 367, 847.
(c) Davies, J. L.; Kawaguchi, Y.; Bennett, S. T.; Copeman, J. B.; Cordell, H. J.; Pritchard, L. E.; Reed, P. W.; Gough, S. C. L.; Jenkins, S. C.; Palmer, S. M.; Balfour, K. M.; Rowe, B. R.; Farrall, M.; Barnett, A. H.; Bain, S. C.; Todd, J. A. Nature 1994, 371, 130.
[4] (a) Boden, G.; Shulman, G. I. Eur. J. Clin. Invest. 2002, 32, 14.
(b) Sturnvoll, M.; Goldstein, B. J.; van Haeften, T. W. Endocr. Res. 2007, 32, 19.
[5] (a) Hamaty, M. Cleve. Clin. J. Med. 2011, 78, 332.
(b) Hayward, R. A.; Manning, W. G.; Kaplan, S. H.; Wagner, E. H.; Greenfield, S. J. Am. Med. Assoc. 1997, 278, 1663.
[6] (a) Owens, D. R.; Zinman, B.; Bolli, G. B. Lancet 2001, 358, 739.
(b) Gualandi-Signorini, A. M.; Giorgi, G. Eur. Rev. Med. Pharmacol. Sci. 2001, 5, 73.
[7] Langguth, P.; Bohner, V.; Heizmann, J.; Merkle, H. P.; Wolffram, S.; Amidon, G. L.; Yamashita, S. J. Controlled Release 1997, 46, 39.
[8] (a) Heinemann, L.; Pfutzner, A.; Heise, T. Curr. Pharm. Des. 2001, 7, 1327.
(b) Owens, D. R. Nat. Rev. Drug Discovery 2002, 1, 529.
[9] (a) Buzasi, K.; Sapi, Z.; Jermendy, G. Diabetes Res. Clin. Pract. 2011, 94, E34.
(b) Chantelau, E.; Spraul, M.; Muhlhauser, I.; Gause, R.; Berger, M. Diabetologia 1989, 32, 421.
(c) Richardson, T.; Kerr, D. Am. J. Clin. Dermatol. 2003, 4, 661.
[10] (a) Jeandidier, N.; Boivin, S. Adv. Drug Delivery Rev. 1999, 35, 179.
(b) Wu, W.; Zhou, S. Macromol. Biosci. 2013, 13, 1464.
(c) Bratlie, K. M.; York, R. L.; Invernale, M. A.; Langer, R.; Anderson, D. G. Adv. Healthcare Mater. 2012, 1, 267.
(d) Ravaine, V.; Ancla, C.; Catargi, B. J. Controlled Release 2008, 132, 2.
[11] (a) Gu, Z.; Aimetti, A. A.; Wang, Q.; Dang, T. T.; Zhang, Y.; Veiseh, O.; Cheng, H.; Langer, R. S.; Anderson, D. G. ACS Nano 2013, 7, 4194.
(b) Zhang, Y. Q.; Yu, J. C.; Shen, Q. D.; Gu, Z. Prog. Chem. 2015, 27, 11(in Chinese).(张宇琪, 俞计成, 沈群东, 顾臻, 化学进展, 2015, 27, 11.)
[12] Gao, L.; Wang, T.; Jia, K.; Wu, X.; Yao, C.; Shao, W.; Zhang, D.; Hu, X.-Y.; Wang, L. Chem.-Eur. J. 2017, 23, 6605.
[13] Mo, R.; Jiang, T.; Di, J.; Tai, W.; Gu, Z. Chem. Soc. Rev. 2014, 43, 3595.
[14] Bankar, S. B.; Bule, M. V.; Singhal, R. S.; Ananthanarayan, L. Biotechnol. Adv. 2009, 27, 489.
[15] (a) Steiner, M.-S.; Duerkop, A.; Wolfbeis, O. S. Chem. Soc. Rev. 2011, 40, 4805.
(b) Wu, Q.; Wang, L.; Yu, H.; Wang, J.; Chen, Z. Chem. Rev. 2011, 111, 7855.
[16] (a) Gordijo, C. R.; Koulajian, K.; Shuhendler, A. J.; Bonifacio, L. D.; Huang, H. Y.; Chiang, S.; Ozin, G. A.; Giacca, A.; Wu, X. Y. Adv. Funct. Mater. 2011, 21, 73.
(b) Zhao, W.; Zhang, H.; He, Q.; Li, Y.; Gu, J.; Li, L.; Li, H.; Shi, J. Chem. Commun. 2011, 47, 9459.
[17] Gordijo, C. R.; Shuhendler, A. J.; Wu, X. Y. Adv. Funct. Mater. 2010, 20, 1404.
[18] Kim, M. Y.; Kim, J. ACS Biomater. Sci Eng. 2017, 3, 572.
[19] Gu, Z.; Dang, T. T.; Ma, M.; Tang, B. C.; Cheng, H.; Jiang, S.; Dong, Y.; Zhang, Y.; Anderson, D. G. ACS Nano 2013, 7, 6758.
[20] Tai, W.; Mo, R.; Di, J.; Subramanian, V.; Gu, X.; Buse, J. B.; Gu, Z. Biomacromolecules 2014, 15, 3495.
[21] Discher, D. E.; Ahmed, F. Annu. Rev. Biomed. Eng. 2006, 8, 323.
[22] Napoli, A.; Boerakker, M. J.; Tirelli, N.; Nolte, R. J. M.; Sommerdijk, N.; Hubbell, J. A. Langmuir 2004, 20, 3487.
[23] (a) Kohen, R. Biomed. Pharmacother. 1999, 53, 181.
(b) Liu, Y.; Du, J.; Yan, M.; Lau, M. Y.; Hu, J.; Han, H.; Yang, O. O.; Liang, S.; Wei, W.; Wang, H.; Li, J.; Zhu, X.; Shi, L.; Chen, W.; Ji, C.; Lu, Y. Nat. Nanotechnol. 2013, 8, 187.
[24] Hu, X.; Yu, J.; Qian, C.; Lu, Y.; Kahkoska, A. R.; Xie, Z.; Jing, X.; Buse, J. B.; Gu, Z. ACS Nano 2017, 11, 613.
[25] Veiseh, O.; Tang, B. C.; Whitehead, K. A.; Anderson, D. G.; Langer, R. Nat. Rev. Drug Discovery 2015, 14, 45.
[26] (a) Donnelly, R. F.; Singh, T. R. R.; Woolfson, A. D. Drug Delivery 2010, 17, 187.
(b) Yang, S.; Wu, F.; Liu, J.; Fan, G.; Welsh, W.; Zhu, H.; Jin, T. Adv. Funct. Mater. 2015, 25, 4633.
[27] (a) Harvey, A. J.; Kaestner, S. A.; Sutter, D. E.; Harvey, N. G.; Mikszta, J. A.; Pettis, R. J. Pharm. Res. 2011, 28, 107.
(b) Heo, Y. J.; Shibata, H.; Okitsu, T.; Kawanishi, T.; Takeuchi, S. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 13399.
[28] (a) Krohn, K. A.; Link, J. M.; Mason, R. P. J. Nucl. Med. 2008, 49, 129S.
(b) Nunn, A.; Linder, K.; Strauss, H. W. Eur. J. Nucl. Med. 1995, 22, 265.
[29] (a) Edwards, D. I. J. Antimicrob. Chemother. 1993, 31, 9.
(b) Takasawa, M.; Moustafa, R. R.; Baron, J.-C. Stroke 2008, 39, 1629.
[30] Yu, J.; Zhang, Y.; Ye, Y.; DiSanto, R.; Sun, W.; Ranson, D.; Ligler, F. S.; Buse, J. B.; Gu, Z. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 8260.
[31] Yu, J.; Qian, C.; Zhang, Y.; Cui, Z.; Zhu, Y.; Shen, Q.; Ligler, F. S.; Buse, J. B.; Gu, Z. Nano Lett. 2017, 17, 733.
[32] Ye, T.; Bai, X.; Jiang, X.; Wu, Q.; Chen, S.; Qu, A.; Huang, J.; Shen, J.; Wu, W. Polym. Chem. 2016, 7, 2847.
[33] Lorand, J. P.; Edwards, J. O. J. Org. Chem. 1959, 24, 769.
[34] Preinerstorfer, B.; Laemmerhofer, M.; Lindner, W. J. Sep. Sci. 2009, 32, 1673.
[35] (a) Miyake, K.; Tanaka, T.; McNeil, P. L. PLoS One 2007, 2.
(b) Vaz, A. F. M.; Souza, M. P.; Vieira, L. D.; Aguiar, J. S.; Silva, T. G.; Medeiros, P. L.; Melo, A. M. M. A.; Silva-Lucca, R. A.; Santana, L. A.; Oliva, M. L. V.; Perez, K. R.; Cuccovia, I. M.; Coelho, L. C. B. B.; Correia, M. T. S. Radiat. Phys. Chem. 2013, 85, 218.
[36] Huang, Y.-J.; Ouyang, W.-J.; Wu, X.; Li, Z.; Fossey, J. S.; James, T. D.; Jiang, Y.-B. J. Am. Chem. Soc. 2013, 135, 1700.
[37] (a) Van den Berghe, G.; Wilmer, A.; Hermans, G.; Meersseman, W.; Wouters, P. J.; Milants, I.; Van Wijngaerden, E.; Bobbaers, H.; Bouillon, R. N. Engl. J. Med. 2006, 354, 449.
(b) Van den Berghe, G.; Wouters, P.; Weekers, F.; Verwaest, C.; Bruyninckx, F.; Schetz, M.; Vlasselaers, D.; Ferdinande, P.; Lauwers, P.; Bouillon, R. N. Engl. J. Med. 2001, 345, 1359.
[38] Wu, W.; Mitra, N.; Yan, E. C. Y.; Zhou, S. ACS Nano 2010, 4, 4831.
[39] (a) Alexeev, V. L.; Sharma, A. C.; Goponenko, A. V.; Das, S.; Lednev, I. K.; Wilcox, C. S.; Finegold, D. N.; Asher, S. A. Anal. Chem. 2003, 75, 2316.
(b) Zhang, C.; Losego, M. D.; Braun, P. V. Chem. Mater. 2013, 25, 3239.
[40] Shiino, D.; Murata, Y.; Kataoka, K.; Koyama, Y.; Yokoyama, M.; Okano, T.; Sakurai, Y. Biomaterials 1994, 15, 121.
[41] Zhang, C.; Cano, G. G.; Braun, P. V. Adv. Mater. 2014, 26, 5678.
[42] Holtz, J. H.; Asher, S. A. Nature 1997, 389, 829.
[43] Goponenko, A. V.; Asher, S. A. J. Am. Chem. Soc. 2005, 127, 10753.
[44] Wang, B.; Ma, R.; Liu, G.; Liu, X.; Gao, Y.; Shen, J.; An, Y.; Shi, L. Macromol. Rapid Commun. 2010, 31, 1628.
[45] Ma, R.; Yang, H.; Li, Z.; Liu, G.; Sun, X.; Liu, X.; An, Y.; Shi, L. Biomacromolecules 2012, 13, 3409.
[46] Yang, H.; Sun, X.; Liu, G.; Ma, R.; Li, Z.; An, Y.; Shi, L. Soft Matter 2013, 9, 8589.
[47] Yao, Y.; Zhao, L.; Yang, J.; Yang, J. Biomacromolecules 2012, 13, 1837.
[48] (a) Cao, Y.; Zou, X.; Xiong, S.; Li, Y.; Shen, Y.; Hu, X.; Wang, L. Chin. J. Chem. 2015, 33, 329.
(b) Hu, X.-Y.; Jia, K.; Cao, Y.; Li, Y.; Qin, S.; Zhou, F.; Lin, C.; Zhang, D.; Wang, L. Chem.-Eur. J. 2015, 21, 1208.
(c) Jie, K.; Zhou, Y.; Yao, Y.; Huang, F. Chem. Soc. Rev. 2015, 44, 3568.
[49] (a) Chi, X.; Yu, G.; Ji, X.; Li, Y.; Tang, G.; Huang, F. ACS Macro Lett. 2015, 4, 996.
(b) Li, B.; Meng, Z.; Li, Q.; Huang, X.; Kang, Z.; Dong, H.; Chen, J.; Sun, J.; Dong, Y.; Li, J.; Jia, X.; Sessler, J. L.; Meng, Q.; Li, C. Chem. Sci. 2017, 8, 4458.
[50] (a) Li, C.; Shu, X.; Li, J.; Chen, S.; Han, K.; Xu, M.; Hu, B.; Yu, Y.; Jia, X. J. Org. Chem. 2011, 76, 8458.
(b) Li, C.; Xu, Q.; Li, J.; Yao, F.; Jia, X. Org. Biomol. Chem. 2010, 8, 1568.
[51] (a) Cheng, C.; Zhang, X.; Xiang, J.; Wang, Y.; Zheng, C.; Lu, Z.; Li, C. Soft Matter 2012, 8, 765.
(b) Wang, Y.; Zhang, X.; Han, Y.; Cheng, C.; Li, C. Carbohydr. Polym. 2012, 89, 124.
[52] Guo, Q.; Wu, Z.; Zhang, X.; Sun, L.; Li, C. Soft Matter 2014, 10, 911.
[53] Chang, Y.-J.; Liu, X.-Z.; Zhao, Q.; Yang, X.-H.; Wang, K.-M.; Wang, Q.; Lin, M.; Yang, M. Chin. Chem. Lett. 2015, 26, 1203.
[54] (a) Lee, C.-H.; Cheng, S.-H.; Wang, Y.; Chen, Y.-C.; Chen, N.-T.; Souris, J.; Chen, C.-T.; Mou, C.-Y.; Yang, C.-S.; Lo, L.-W. Adv. Funct. Mater. 2009, 19, 215.
(b) Slowing, I. I.; Wu, C.-W.; Vivero-Escoto, J. L.; Lin, V. S. Y. Small 2009, 5, 57.
(c) Taylor, K. M. L.; Kim, J. S.; Rieter, W. J.; An, H.; Lin, W.; Lin, W. J. Am. Chem. Soc. 2008, 130, 2154.
[55] (a) Charles, M. A.; Fanska, R.; Schmid, F. G.; Forsham, P. H.; Grodsky, G. M. Science 1973, 179, 569.
(b) Dyachok, O.; Idevall-Hagren, O.; Sagetorp, J.; Tian, G.; Wuttke, A.; Arrieumerlou, C.; Akusjarvi, G.; Gylfe, E.; Tengholm, A. Cell Metabolism 2008, 8, 26.
[56] Tengholm, A. Upsala J. Med. Sci. 2012, 117, 355.
[57] Zhao, Y.; Trewyn, B. G.; Slowing, I. I.; Lin, V. S. Y. J. Am. Chem. Soc. 2009, 131, 8398.
[58] Geijtenbeek, T. B. H.; Gringhuis, S. I. Nat. Rev. Immunol. 2009, 9, 465.
[59] Sharon, N.; Lis, H. Science 1972, 177, 949.
[60] (a) Brownlee, M.; Cerami, A. Science 1979, 206, 1190.
(b) Seminoff, L. A.; Gleeson, J. M.; Zheng, J.; Olsen, G. B.; Holmberg, D.; Mohammad, S. F.; Wilson, D.; Kim, S. W. Int. J. Pharm. 1989, 54, 251.
[61] Yin, R.; Tong, Z.; Yang, D.; Nie, J. Int. J. Biol. Macromol. 2011, 49, 1137.
[62] Wu, S.; Huang, X.; Du, X. Angew. Chem., Int. Ed. 2013, 52, 5580.
[63] (a) Brogden, R. N.; Heel, R. C. Drugs 1987, 34, 350.
(b) Reichard, P.; Nilsson, B. Y.; Rosenqvist, U. N. Engl. J. Med. 1993, 329, 304.
[64] Jain, S.; Hreczuk-Hirst, D. H.; McCormack, B.; Mital, M.; Epenetos, A.; Laing, P.; Gregoriadis, G. Biochim. Biophys. Acta, Gen. Subj. 2003, 1622, 42.
[65] Bergenstal, R. M.; Rosenstock, J.; Arakaki, R. F.; Prince, M. J.; Qu, Y.; Sinha, V. P.; Howey, D. C.; Jacober, S. J. Diabetes Care 2012, 35, 2140.

Outlines

/