Articles

Zn-Catalyzed Beckmann Rearrangement Reaction

  • Sun Chao ,
  • Yao Wubing ,
  • Zhang Bin ,
  • Huang Xiangyun ,
  • Yu Jiangjiang
Expand
  • Department of Chemistry, Taizhou University, Taizhou 318000

Received date: 2017-08-09

  Revised date: 2017-09-03

  Online published: 2017-10-20

Supported by

Project supported by the First Class Discipline of Zhejiang Province (Chemical Engineering and Technology) and the National Undergraduate Training Programs for Innovation and Entrepreneurship (No. 201710350018).

Abstract

The Beckmann rearrangement reactions generally require strong acids, and always suffer from harsh conditions and serious environmental pollutions which go against the principle of green chemistry. Base on the green zinc catalyst, highly efficient catalytic reaction of ketoxime by Beckmann rearrangement was developed. The acid-additives-free reactions proceed under mild conditions, and show broad functional-group compatibility. Moreover, through this highly active and available zinc catalyst, the Beckmann rearrangement reaction is further extended to a one-pot protocol using ketone and hydroxylamine hydrochloride as reactive materials. Featuring high atom-economy and broad substrate scopes, this novel method provided an attractive route for the Beckmann rearrangement reactions.

Cite this article

Sun Chao , Yao Wubing , Zhang Bin , Huang Xiangyun , Yu Jiangjiang . Zn-Catalyzed Beckmann Rearrangement Reaction[J]. Chinese Journal of Organic Chemistry, 2018 , 38(2) : 457 -463 . DOI: 10.6023/cjoc201708018

References

[1] (a) Song, D.; Wang, L.; Xu, X. Chin. J. Org. Chem. 1991, 11, 276(in Chinese). (宋丹青, 王丽, 徐秀娟, 有机化学, 1991, 11, 276.)(b) Xu, X.; Wei, Z.; Bai, X. Chin. J. Org. Chem. 2006, 26, 354(in Chinese). (徐显秀, 魏忠林, 柏旭, 有机化学, 2006, 26, 354.)(c) Donaruma, L. G.; Heldt, W. Z. Org. React. 1960, 11, 1.
(d) Li, Q.; Yan, L.; Xia, D.; Shen, Y. Chin. J. Org. Chem. 2011, 31, 2034(in Chinese). (李倩, 严罗一, 夏定, 申永存, 有机化学, 2011, 31, 2034.)(e) Chen, X.; Ye, J.; Hu, A. Chin. J. Org. Chem. 2012, 32, 520(in Chinese). (陈晓东, 叶姣, 胡艾希, 有机化学, 2012, 32, 520.)(f) Li, J.; Cheng, C.; Zhang, X.; Li, Z.; Cai, F.; Xue, Y.; Liu, W. Chin. J. Chem. 2012, 30, 1687.
[2] For examples, see:(a) An, N.; Tian, B. -X.; Pi, H. -J.; Eriksson, L. A.; Deng, W. -P. J. Org. Chem. 2013, 78, 4297.
(b) Li, H.; Qin, J.; Yang, Z.; Guan, X.; Zhang, L.; Liao, P.; Li, X. Chem. Commun. 2015, 51, 8637.
(c) Mahajan, P. S.; Humne, V. T.; Tanpure, S. D.; Mhaske, S. B. Org. Lett. 2016, 18, 3450.
(d) Linares, M.; Vargas, C.; García, A.; Ochoa-Hernández, C.; Cekja, J.; García-Muñoz, R. A.; Serrano, D. P. Catal. Sci. Technol. 2017, 7, 181.
(e) Chu, Y.; Li, G.; Huang, L.; Yi, X.; Xia, H.; Zheng, A.; Deng, F. Catal. Sci. Technol. 2017, 7, 2512.
[3] Lee, B. S.; Chi, D. Y. Bull. Korean Chem. Soc. 1998, 19, 1373.
[4] An, N.; Pi, H.; Liu, L.; Du, W.; Deng, W. Chin. J. Chem. 2011, 29, 947.
[5] Furuya, Y.; Ishihara, K.; Yamamoto, H. J. Am. Chem. Soc. 2005, 127, 11240.
[6] Zhu, M.; Cha, C. -T.; Deng, W. -P.; Shi, X. -X. Tetrahedron Lett. 2006, 47, 4861.
[7] Srinivasa, R. N.; Buchi, R. R.; Mukkanti, K. Tetrahedron Lett. 2011, 52, 4888.
[8] Ikushima, Y.; Hatakeda, K.; Sato, O.; Yokoyama, T.; Arai, M. J. Am. Chem. Soc. 2000, 122, 1908.
[9] Guo, S.; Du, Z.; Zhang, S.; Li, D.; Li, Z.; Deng, Y. Green Chem. 2006, 8, 296.
[10] Ramalingan, C.; Park, Y. T. J. Org. Chem. 2007, 72, 4536.
[11] Arisawa, M.; Yamaguchi, M. Org. Lett. 2001, 3, 311.
[12] Owston, N. A.; Parker, A. J.; Williams, J. M. Org. Lett. 2007, 9, 73.
[13] (a) Surya, K. D. Synth. Commun. 2004, 34, 3431.
(b) Owston, N. A.; Parker, A. J.; Williams, J. M. Org. Lett. 2007, 9, 3599.
[14] Raju, G.; Guguloth, V.; Satyanarayana, B. RSC Adv. 2016, 6, 45036.
[15] Xiao, L. -F.; Xia, C. -G.; Chen, J. Tetrahedron Lett. 2007, 48, 7218.
[16] Mishra, A.; Ali, A.; Upreti, S.; Gupta, R. Inorg. Chem. 2008, 47, 154.
[17] Li, J. -T.; Meng, X. -T.; Yin, Y. Synth. Commun. 2010, 40, 1445.
[18] Jefferies, L. R.; Weber, S. R.; Cook, S. P. Synlett 2015, 26, 331.
[19] (a) Komeda, M.; Ozaki, A.; Hayashi, K.; Sumimoto, M.; Hori, K.; Sugimoto, T.; Yamamoto, H. Int. J. Org. Chem. 2015, 5, 57.
(b) Yamamoto, H.; Komeda, M.; Ozaki, A.; Sumimoto, M.; Hori, K.; Sugimoto, T. Int. J. Org. Chem. 2015, 5, 147.
[20] Sharghi, H.; Hosseini, M. Synthesis-Stuttgart 2002, 8, 1057.
[21] Mahajan, S.; Sharma, B.; Kapoor, K. K. Tetrahedron Lett. 2015, 56, 1915.
[22] Anuradha, S.; Kumari, S.; Layek, D.; Pathak, D. J. Mol. Struct. 2017, 1130, 368.
[23] Zhu, Z.; Tang, X.; Li, J.; Li, X.; Wu, W.; Deng, G.; Jiang, H. Org. Lett. 2017, 19, 1370.
[24] Liu, X.; Xiao, L.; Wu, H.; Li, Z.; Xia, C. Catal. Commun. 2009, 10, 424.
[25] Xie, F.; Du, C.; Pang, Y.; Lian, X.; Xue, C.; Chen, Y.; Wang, X.; Cheng, M.; Guo, C.; Lin, B.; Liu, Y. Tetrahedron Lett. 2016, 57, 5820.
[26] Yu, J.; Lu, M. Org. Biomol. Chem. 2015, 13, 7397.
[27] Zhang, Q. -Q.; Dong, J.; Liu, Y. -M.; Cao, Y.; He, H. -Y.; Wang, Y. -D. Chem. Commun. 2017, 53, 2930.
[28] Teders, M.; Pitzer, L.; Buss, S.; Glorius, F. ACS Catal. 2017, 7, 4053.
[29] Chen, M.; Yu, L.; Ren, Z. -H.; Wang, Y. -Y.; Guan, Z. -H. Chem. Commun. 2017, 53, 6243.
[30] Liang, D.; Li, Y.; Gao, S.; Li, R.; Li, X.; Wang, B.; Yang, H. Green Chem. 2017, 19, 3344.
[31] Patel, P.; Borah, G. Chem. Commun. 2017, 53, 443.
[32] Jin, X.; Kataoka, K.; Yatabe, T.; Yamaguchi, K.; Mizuno, N. Angew. Chem., Int. Ed. 2016, 55, 7212.

Outlines

/