Reviews

Oxygenation of Organic Substrates Based on Light-Driven Water Oxidation

  • Miao Siwen ,
  • Na Yong
Expand
  • Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001

Received date: 2017-09-05

  Revised date: 2017-10-12

  Online published: 2017-11-03

Supported by

Project supported by the National Natural Science Foundation of China (No. 21603046).

Abstract

Hydrogen production by artificial photosynthetic water splitting is an efficient approach to convert solar ennergy into chemical bonds. Oxygenation of an organic substrate based on light-driven water oxidation is innovative way to mimic the oxygen evolving center (OEC) in Photosystem Ⅱ. The metal catalyst will accomplish H2O activation to generate high valent metal-oxo intermediate, which can transfer the oxygen atom to an organic substrate, during which the H atoms in H2O molecule could be released. This review is a perspective of the recent advances in oxygenation of organic substrates with water as oxygen source. In the meanwhile, research prospect on photocatalytic hydrogen production coupled with the photocatalytic oxygenation of an organic substrate for a new water splitting system has been proposed.

Cite this article

Miao Siwen , Na Yong . Oxygenation of Organic Substrates Based on Light-Driven Water Oxidation[J]. Chinese Journal of Organic Chemistry, 2018 , 38(3) : 575 -584 . DOI: 10.6023/cjoc201709006

References

[1] Lewis, N. S.; Nocera, D. G. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 15729.
[2] Barber, J. Chem. Soc. Rev. 2009, 38, 185.
[3] Duan, L. L.; Wang, L.; Li, F. S.; Li, F.; Sun, L. Acc. Chem. Res. 2015, 48, 2084.
[4] Shen, J. R. Annu. Rev. Plant Biol. 2015, 66, 23.
[5] Cox, N.; Retegan, M.; Neese, F.; Pantazis, D. A.; Boussac, A.; Lubitz, W. Science 2014, 345, 804.
[6] Groves, J. T. Nat. Chem. 2014, 6, 89.
[7] Oloo, W. N.; Que Jr., L. Acc. Chem. Res. 2015, 48, 2612.
[8] Nam, W.; Lee, Y. M.; Fukuzumi, S. Acc. Chem. Res. 2014, 47, 1146.
[9] Fukuzumi, S.; Ohkubo, K.; Lee, Y. M.; Nam, W. Chem.-Eur. J. 2015, 21, 17548.
[10] Moyer, B. A.; Meyer, T. J. J. Am. Chem. Soc. 1978, 100, 3601.
[11] Wasylenko, D. J.; Ganesamoorthy, C.; Henderson, M. A.; Berlinguette, C. P. Inorg. Chem. 2011, 50, 3662.
[12] Duan, L.; Tong, L.; Xu, Y.; Sun, L. Energy Environ. Sci. 2011, 4, 3296.
[13] Funyu, S.; Isobe, T.; Takagi, S.; Tryk, D. A.; Inoue, H. J. Am. Chem. Soc. 2003, 125,5734.
[14] Funyu, S.; Kinai, M.; Masui, D.; Takagi, S.; Shimada, T.; Tachibanaa, H.; Inoue, H. Photochem. Photobiol. Sci. 2010, 9, 931.
[15] Kurimoto, K.; Yamazaki, T.; Suzuri, Y.; Nabetani, Y.; Onuki, S.; Takagi, S.; Shimada, T.; Tachibana, H.; Inoue, H. Photochem. Photobiol. Sci. 2014, 13, 154.
[16] Fukuzumi, S.; Kishi, T.; Kotani, H.; Lee, Y. M.; Nam, W. Nat. Chem. 2011, 3, 38.
[17] Fukuzumi, S.; Mizuno, T.; Ojiri, T. Chem.-Eur. J. 2012, 18, 15794.
[18] Treadway, J. A.; Moss, J. A.; Meyer, T. J. Inorg. Chem. 1999, 38, 4386.
[19] Hirai, Y.; Kojima, T.; Mizutani, Y.; Shiota, Y.; Yoshizawa, K.; Fukuzumi, S. Angew. Chem., Int. Ed. 2008, 47, 5772.
[20] Ohzu, S.; Ishizuka, T.; Hirai, Y.; Jiang, H.; Sakaguchi, M.; Ogura, T.; Fukuzumi, S.; Kojima, T. Chem. Sci. 2012, 3, 3421.
[21] Kalita, D.; Radaram, B.; Brooks, B.; Kannam, P. P.; Zhao, X. ChemCatChem 2011, 3, 571.
[22] Ohzu, S.; Ishizuka, T.; Hirai, Y.; Fukuzumi, S.; Kojima, T. Chem.-Eur. J. 2013, 19, 1563.
[23] Singh, W. M.; Pegram, D.; Duan, H. F.; Kalita, D.; Simone, P.; Emmert, G. L.; Zhao, X. Angew. Chem., Int. Ed. 2012, 51, 1653.
[24] Giovanni, C. D.; Poater, A.; Benet-Buchholz, J.; Cavallo, L.; Solà, M.; Llobet, A. Chem.-Eur. J. 2014, 20, 3898.
[25] Farràs, P.; Giovanni, C. D.; Clifford, J. N.; Garrido-Barros, P.; Palomares, E.; Llobet, A. Green Chem. 2016, 18, 255.
[26] Li, F.; Yu, M.; Jiang, Y.; Huang, F.; Li, Y. Q.; Zhang, B.; Sun, L. Chem. Commun. 2011, 47, 8949.
[27] Zhou, X.; Li, F.; Li, X.; Li, H.; Wang, Y.; Sun, L. Dalton Trans. 2015, 44, 475.
[28] Bai, L.; Li, F.; Wang, Y.; Li, H.; Jiang, X.; Sun, L. Chem. Commun. 2016, 52, 9711.
[29] Hamelin, O.; Guillo, P.; Loiseau, F.; Boissonnet, M.; Ménage, S. Inorg. Chem. 2011, 50, 7952.
[30] Guillo, P.; Hamelin, O.; Batat, P.; Jonusauskas, G.; McClenaghan, N. D.; Ménage, S. Inorg. Chem. 2012, 51, 2222.
[31] Li, T. T.; Li, F. M.; Zhao, W. L.; Tian, Y. H.; Chen, Y.; Cai, R.; Fu, W. F. Inorg. Chem. 2015, 54, 183.
[32] Phungsripheng, S.; Kozawa, K.; Akita, M.; Inagaki, A. Inorg. Chem. 2016, 55, 3750.
[33] Lee, Y. M.; Dhuri, S. N.; Sawant, S. C.; Cho, J.; Kubo, M.; Ogura, T.; Fukuzumi, S.; Nam, W. Angew. Chem., Int. Ed. 2009, 48, 1803.
[34] Kotani, H.; Suenobu, T.; Lee, Y. M.; Nam, W.; Fukuzumi, S. J. Am. Chem. Soc. 2011, 133, 3249.
[35] Company, A; Sabenya, G.; González-Béjar, M; Gómez, L; Clémancey, M; Blondin, G; Jasniewski, A. J.; Puri, M; Browne, W. R; Latour, J.; Que Jr., L.; Costas, M.; Pérez-Prieto, J.; Lloret-Fillol, J. J. Am. Chem. Soc. 2014, 136, 4624.
[36] Chantarojsiri, T.; Sun, Y.; Long, J. R.; Chang, C. J. Inorg. Chem. 2015, 54, 5879.
[37] Herrero, C.; Quaranta, A.; Sircoglou, M.; Sénéchal-David, K.; Baron, A.; Marín, I. M.; Buron, C.; Baltaze, J.; Leibl, W.; Aukauloo, A.; Banse, F. Chem. Sci. 2015, 6, 2323.
[38] Sawant, S. C.; Wu, X.; Cho, J.; Cho, K.; Kim, S. H.; Seo, M. S.; Lee, Y. M.; Kubo, M.; Ogura, T.; Shaik, S.; Nam, W. Angew. Chem., Int. Ed. 2010, 49, 8190.
[39] Wu, X.; Yang, X.; Lee, Y. M.; Nam, W.; Sun, L. Chem. Commun. 2015, 51, 4013.
[40] Shen, D.; Saracini, C.; Lee, Y. M.; Sun, W.; Fukuzumi, S.; Nam, W. J. Am. Chem. Soc. 2016, 138, 15857.

Outlines

/