Chinese Journal of Organic Chemistry >
Synthesis of New Matrine Derivatives in Aqueous Phase and Their Crystal Structures
Received date: 2017-09-13
Revised date: 2017-10-11
Online published: 2017-12-05
Supported by
Project supported by the National Natural Science Foundation of China (No. 21272144) and the Fundamental Research Funds for the Central Universities (Nos. 1301030054, X2015YB06).
Thirteen matrine derivatives were synthesized with high yield with one step in aqueous phase. The chemical structures of the synthesized compounds were characterized by 1H NMR, 13C NMR and HRMS. Three crystals of compound 13-(piperidin-1-yl)matrine (a), 13-(piperidin-1-yl)carbodithioate matrine (k) and 13-(morpholin-4-yl) carbodithioate matrine (m) were obtained and X-ray diffraction data showed that their structures included five chiral carbon atoms with the absolute configuration of 5(S), 6(S), 7(R), 11(R) and 13(S). Meanwhile, there were three classical hydrogen bonds:O(2)-H(21B)…N(2), O(2)-H(21A)…O(1) and C(9)-H(9A)…O(1) by analyzing the data of compound 13-(piperidin-1-yl) matrine (a). These strong hydrogen bonds can play a key role in the accumulation of crystals. Biological studies indicated that the synthetic derivatives had some inhibitory effect against SW480, A549 and A431 cells. The introduction of N or S atom at C-13 position of matrine could improve the antitumor activity.
Key words: matrine; derivative; synthesis; crystal
Wang Wei, Lü Mengjiao, Zhao Lixia, Zhang Yaling, Li Benhao, Li Baolin . Synthesis of New Matrine Derivatives in Aqueous Phase and Their Crystal Structures[J]. Chinese Journal of Organic Chemistry, 2018 , 38(4) : 883 -889 . DOI: 10.6023/cjoc201709021
[1] Zhang, J. P.; Zhang, M.; Zhou, J. P.; Liu, F. T.; Zhou, B.; Xie, W, F.; Guo, C.; Zhang, C.; Qian, D. H. Acta Pharm. Sin. 2001, 22, 183.
[2] Hu, H. G.; Wang, S. Z.; Zhang, C. M.; Wang, L.; Ding, L.; Zhang, J. P.; Wu, Q. Y. Bioorg. Med. Chem. Lett. 2010, 20, 7537.
[3] Wang, L. S.; You, Y. J.; Wang, S. Q.; Liu, X.; Liu, B. M.; Wang, J. N.; Lin, X.; Chen, M. S.; Liang, G.; Yang, H. Bioorg. Med. Chem. Lett. 2012, 22, 4100.
[4] Huang, Z. S.; Zhou, X. H. Med. Recapitulate 2009, 15, 1701.
[5] Zhang, L. J.; Wang, T. T.; Wen, X. M.; Wei, Y.; Peng, X. C.; Li, H.; Wei, L. Eur. J. Pharmacol. 2007, 563, 69.
[6] Lin, Z.; Huang, C. F.; Liu, X. S.; Jiang, J. H. Basic Clin. Pharmacol. 2010, 108, 304.
[7] Chui, C. H.; Lau, F. Y.; Tang, J. C. O.; Kan, K. L.; Cheng, G. Y. M.; Int. J. Mol. Med. 2005, 16, 337.
[8] Du, N. N.; Li, X.; Wang, Y. P.; Liu, F. Y.; Liu, X. C.; Li, X.; Peng, Z. G.; Gao, L. M.; Jiang, J. D.; Song, D. Q. Bioorg. Med. Chem. Lett. 2011, 21, 4732.
[9] Gao, L. M.; Han, Y. X.; Wang, Y. P.; Li, Y. H.; Shan, Y. Q.; Li, X.; Peng, Z. G.; Bi, C. W.; Zhang, T.; Du, N. N.; Jiang, J. D.; Song, D. Q. J. Med. Chem. 2011, 54, 869.
[10] He, L. Q.; Liu, J.; Yin, D. K.; Zhang, Y. H.; Wang, X. S. Chin. Chem. Lett. 2010, 21, 381.
[11] Chao, F.; Wang, D. E.; Liu, R.; Tu, Q.; Liu, J. J.; Wang, J. Y. Molecules 2013, 18, 5420.
[12] Wang, W.; Duan, Z. H.; Zhang, J. T.; Li, B. L. Z. Kristallogr.-New Cryst. Struct. 2007, 222, 239.
[13] Wang, W.; Zhang, J. T.; Yan, H. Y.; Li, B. L. Z. Kristallogr.-New Cryst. Struct. 2007, 222, 71.
[14] Ci, Y.; Han, X. L.; Ma, A. M.; Wang, L.; Cheng, C. T.; Li, J. Y.; Wen, Y. J. CN 102603744, 2012[Chem. Abstr. 2012, 157, 295336].
[15] Li, Z. B.; Liao, D. D.; Zhao, C. G.; Zuo, H.; He, X. Y.; Deng, L.; Chen, M.; Liu, Q. W.; Tian, X.; Yang, J. F. CN 101585838, 2009[Chem. Abstr. 2009, 152, 57453].
[16] Kaiser, R. I.; Ochsenfeld, C.; Head-Gordon, M.; Lee, Y. T. J. Chem. Phys. 1999, 110, 2391.
[17] Hunter, C. A.; Sanders, J. K. M. J. Am. Chem. Soc. 1990, 112, 5525.
[18] Kaafarani, B. R.; Pinkerton, A. A.; Neckers, D. C. Tetrahedron Lett. 2001, 42, 8137.
[19] Lo, C. Y.; Hsu, L. C.; Chen, M. S.; Lin, Y. J.; Chen, L. G.; Kuo, C. D.; Wu, J. Y. Bioorg. Med. Chem. Lett. 2013, 23, 305.
/
〈 |
|
〉 |