Chinese Journal of Organic Chemistry >
Synthesis of the Variously Substituted Nitroalkenes via Ethylenediaminium Trifluoroacetate-Catalyzed Condensation of Nitroalkanes with Aryl Aldehydes
Received date: 2017-09-30
Revised date: 2017-11-22
Online published: 2017-12-05
Supported by
Project supported by the National Natural Science Foundation of China (No. 20972048).
A general method for synthesis of the variously substituted nitroalkenes via ethylenediaminium trifluoroacetate (EDA-TFA)-catalyzed condensation of nitroalkanes with aryl aldehydes is described. Various aminium salts of ethylenediamine with different acids as well as aminium salts of trifluoroacetic acid with different amines were examined as catalysts, and various solvents were also tested for the reaction. It was found that EDA-TFA is obviously more effective than other aminium salts, and dimethylsulfoxide (DMSO) is better than other solvents. In presence of 5 mol% of EDA-TFA as the catalyst, one-pot reaction of aryl aldehydes with various nitroalkanes in DMSO efficiently afforded variously substituted nitroalkenes in 82%~96% yields.
Huang Zhongshou , Zhu Xingliang , He Yungang , Li Fenglei , Meng Tianzhuo , Shi Xiaoxin . Synthesis of the Variously Substituted Nitroalkenes via Ethylenediaminium Trifluoroacetate-Catalyzed Condensation of Nitroalkanes with Aryl Aldehydes[J]. Chinese Journal of Organic Chemistry, 2018 , 38(4) : 890 -895 . DOI: 10.6023/cjoc201709052
[1] (a) Wang, Y.; Du, Y.; Huang, X.; Wu, X.; Zhang, Y.; Yang, S.; Chi, Y. R. Org. Lett. 2017, 19, 632.
(b) Potter, T. J.; Kamber, D. N.; Mercado, B. Q.; Ellman, J. A. ACS Catal. 2017, 7, 150.
(c) Li, D.; Liu, L.; Tian, Y.; Ai, Y.; Tang, Z.; Sun, H.-B.; Zhang, G. Tetrahedron 2017, 73, 3959.
(d) Liu, L.; Ai, Y.; Li, D.; Qi, L.; Zhou, J.; Tang, Z.; Shao, Z.; Liang, Q.; Sun, H.-B. ChemCatChem 2017, 9, 3131.
(e) Lian, X.-L.; Meng, J.; Han, Z.-Y. Org. Lett. 2016, 18, 4270.
(f) Matsuda, Y.; Koizumi, A.; Haraguchi, R.; Fukuzawa, S.-I. J. Org. Chem. 2016, 81, 7939.
(g) Bai, X.-F.; Song, T.; Xu, Z.; Xia, C.-G.; Huang, W.-S.; Xu, L.-W. Angew. Chem., Int. Ed. 2015, 54, 5255.
(h) Yang, Y.; Du, D. Chin. J. Chem. 2014, 32, 853.
(i) Phelan, J. P.; Patel, E. J.; Ellman, J. A. Angew. Chem., Int. Ed. 2014, 53, 11329.
(j) Kumar, R.; Kumar, T.; Mobin, S. M.; Mambothiri, I. N. N. J. Org. Chem. 2013, 78, 5073.
(k) Chen, L.-A.; Xu, W.; Huang, B.; Ma, J.; Wang, L.; Xi, J.; Harms, K.; Gong, L.; Meggers, E. J. Am. Chem. Soc. 2013, 135, 10598.
(l) Boyce, G. R.; Liu, S.; Johnson, J. S. Org. Lett. 2012, 14, 652.
(m) Dong, W.; Xu, D.; Xie, J. Chin. J. Chem. 2012, 30, 1771.
(n) Wan, N.; Hui, Y.; Xie, Z.; Wang, J. Chin. J. Chem. 2012, 30, 311.
(o) Ma, S.; Wu, L.; Liu, M.; Wang, Y. Chin. J. Chem. 2012, 30, 2707.
(p) Wu, J.; Li, X.; Wu, F.; Wan, B. Org. Lett. 2011, 13, 4834.
(q) Sukhorukov, A. Y.; Boyko, Y. D.; Ioffe, S. L.; Khomutova, Y. A.; Nelyubina, Y. V.; Tartakovsky, V. A. J. Org. Chem. 2011, 76, 7893.
(r) Arai, T.; Wasai, M.; Yokoyama, N. J. Org. Chem. 2011, 76, 2909.
(s) Nakamura, A.; Lectard, S.; Hashizume, D.; Hamashima, Y.; Sodeoka, M. J. Am. Chem. Soc. 2010, 132, 4036.
(t) Li, Q.; Ding, C.-H.; Hou, X.-L.; Dai, L.-X. Org. Lett. 2010, 12, 1080.
(u) Arai, T.; Mishiro, A.; Yokoyama, N.; Suzuki, K.; Sato, H. J. Am. Chem. Soc. 2010, 132, 5338.
(v) Guan, X.-Y.; Wei, Y.; Shi, M. Org. Lett. 2010, 12, 5024.
(w) O'Connor, C. J.; Roydhouse, M. D.; Przybyl, A. M.; Wall, M. D.; Southern, J. M. J. Org. Chem. 2010, 75, 2534.
(x) Wu, M.; Wang, S.; Xia, C.; Sun, W. Chin. J. Chem. 2010, 28, 1424.
[2] (a) Bates, D. J. P.; Smitherman, P. K.; Townsend, A. J.; King, S. B.; Morrow, C. S. Biochemistry 2011, 50, 7765.
(b) Tang, X.; Guo, Y.; Nakamura, K.; Huang, H.; Hamblin, M.; Chang, L.; Villacorta, L.; Yin, K.; Ouyang, H.; Zhang, J. Biochem. Biophy. Res. Commun. 2010, 397, 239.
(c) Gorczynski, M. J.; Smitherman, P. K.; Akiyama, T. E.; Wood, H. B.; Berger, J. P.; King, S. B.; Morrow, C. S. J. Med. Chem. 2009, 52, 4631.
(d) Wang, W.-Y.; Hsieh, P.-W.; Wu, Y.-C.; Wu, C.-C. Biochem. Pharmacol. 2007, 74, 601.
(e) Gorczynski, M. J.; Huang, J.; Lee, H.; King, S. B. Bioorg. Med. Chem. Lett. 2007, 17, 2013.
(f) Milhazes, N.; Calheiros, R.; Marques, M. P. M.; Garrido, J.; Cordeiro, M. N. D. S.; Rodrigues, C.; Quinteira, S.; Novais, C.; Peixe, L.; Borges, F. Bioorg. Med. Chem. 2006, 14, 4078.
(g) Mohan, R.; Rastogi, N.; Namboothiri, I. N. N.; Mobin, S. M.; Panda, D. Bioorg. Med. Chem. 2006, 14, 8073.
(h) Gorczynski, M. J.; Huang, J.; King, S. B. Org. Lett. 2006, 8, 2305.
[3] (a) Motornov, V. A.; Muzalevskiy, V. M.; Tabolin, A. A.; Novikov, R. A.; Nelyubina, Y. V.; Nenajdenko, V. G.; Ioffe, S. L. J. Org. Chem. 2017, 82, 5274.
(b) Maity, S.; Manna, S.; Rana, S.; Naveen, T.; Mallick, A.; Maiti, D. J. Am. Chem. Soc. 2013, 135, 3355.
(c) Naveen, T.; Maity, S.; Sharma, U.; Maiti, D. J. Org. Chem. 2013, 78, 5949.
(d) Maity, S.; Naveen, T.; Sharma, U.; Maiti, D. Org. Lett. 2013, 15, 3384.
(e) Manna, S.; Jana, S.; Saboo, T.; Maji, A.; Maiti, D. Chem. Commun. 2013, 49, 5286.
[4] (a) Hass, H. B.; Riley, E. F. Chem. Rev. 1943, 32, 373.
(b) Ballini, R.; Castagnani, R.; Petrini, M. J. Org. Chem. 1992, 57, 2160.
(c) Concellon, J. M.; Bernard, P. L.; Rodriguez-Solla, H.; Concellon, C. J. Org. Chem. 2007, 72, 5421.
(d) Liu, Y.-Y.; Wang, S.-W.; Zhang, L.-J.; Wu, Y.-J.; Li, Q.-H.; Yang, G.-S.; Xie, M.-H. Chin. J. Chem. 2008, 26, 2267.
(e) Alizadeh, A.; Khodaei, M. M.; Eshghi, A. J. Org. Chem. 2010, 75, 8295.
(f) Rokhum, L.; Bez, G. Tetrahedron Lett. 2013, 54, 5500.
[5] (a) Henry, L. Bull. Soc. Chim. Fr. 1895, 13, 999.
(b) Rosini, G. Ballini, R. Synthesis 1988, 833.
(c) Ballini, R.; Bosica, G. J. Org. Chem. 1997, 62, 425.
(d) Kisanga, P. B.; Verkade, J. G. J. Org. Chem. 1999, 64, 4298.
(e) Luzzio, F. A. Tetrahedron 2001, 57, 915.
[6] (a) Xi, B.-M.; Jiang, Z.-Z.; Zou, J.-W.; Ni, P.-Z.; Chen, W.-H. Bioorg. Med. Chem. 2011, 19, 783.
(b) McNamara, Y. M.; Cloonan, S. M.; Knox, A. J. S.; Keating, J. J.; Butler, S. G.; Peters, G. H.; Meagan, M. J.; Williams, D. C. Bioorg. Med. Chem. 2011, 19, 1328.
(c) Rodrlguez, J. M; Pujol, M. D. Tetrahedron Lett. 2011, 52, 2629.
(d) Kim, G.-J.; Kim, H.-J. Tetrahedron Lett. 2010, 51, 185.
(e) Cheng, P.; Jiang, Z.-Y.; Wang, R.-R.; Zhang, X.-M.; Wang, Q.; Zheng, Y.-T.; Zhou, J.; Chen, J.-J. Biorg. Med. Chem. Lett. 2007, 17, 4476.
(f) Elsner, J.; Boeckler, F.; Davidson, K.; Sugden, D.; Gmeiner, P. Bioorg. Med. Chem. 2006, 14, 1949.
(g) Huh, S.; Chen, H.-T.; Wiench, J. W.; Pruski, M.; Lin, V. S.-Y. J. Am. Chem. Soc. 2004, 126, 1010.
(h) Osuna, M. R.; Aguirre, G.; Somanathan, R.; Molins, E. Tetrahedron:Asymmetry 2002, 13, 2261.
(i) Degnan, A. P.; Meyers, A. I. J. Org. Chem. 2000, 65, 3503.
[7] Yang, J.; Dong, J.; Lu, X.; Zhang, Q.; Ding, W.; Shi, X. Chin. J. Chem. 2012, 30, 2827.
[8] Ren, Y.; Li, M.; Yang, J.; Peng, J.; Gu, Y. Adv. Synth. Catal. 2011, 353, 3473.
[9] Ballini, R.; Castagnai, R.; Petrini, M. J. Org. Chem. 1992, 57, 2160.
/
〈 |
|
〉 |