Chinese Journal of Organic Chemistry >
Synthesis of Thioamidoguanidine Derivatives under Solvent-Free Grinding Conditions
Received date: 2017-10-09
Revised date: 2017-11-21
Online published: 2017-12-05
Supported by
Project supported by the National Natural Science Foundation of China (No. 21271035), the Major Basic Research Project of the Natural Science Foundation of the Anhui Province Education Department (No. KJ2016A512) and the Key Program in the Youth Elite Support Plan in Universities of Anhui Province (No. gxyqZD2016372).
The in situ generated aryl-alkyl unsymmetrical thioureas were prepared by the reaction of aryl isothiocyanate with cyclic aliphatic secondary amine. Then, the thioamidoguanidino derivatives instead of the expected Hugerschoff product 2-aminobenzothiazole were obtained from unsymmetrical thioureas using iodosobenzene diacetate and Et3N under solvent-free grinding conditions. The advantages of this procedure are simple operation, mild reaction conditions, and solvent-free. The products were identified by IR, HRMS, 1H NMR and 13C NMR. The reported method is an efficient approach for the synthesis of thioamidoguanidine derivatives.
Liu Tianbao , Peng Yanfen , Wang Yajie , Yong Jiayuan , Wang Xin . Synthesis of Thioamidoguanidine Derivatives under Solvent-Free Grinding Conditions[J]. Chinese Journal of Organic Chemistry, 2018 , 38(4) : 969 -974 . DOI: 10.6023/cjoc201710010
[1] (a) Lu, G.; Zhang, Q.; Xu, Y.-J. Chin. J. Org. Chem. 2004, 24, 600(in Chinese). (卢刚, 张谦, 许佑君, 有机化学, 2004, 24, 600.)
(b) Yu, F.-C.; Yan, S.-J.; Lin, J. Chin. J. Org. Chem. 2010, 30, 1421(in Chinese). (余富朝, 严胜骄, 林军, 有机化学, 2010, 30, 1421.)
[2] (a) Bougrin, K.; Loupy, A.; Soufiaoui, M. J. Photochem. Photobiol., A 2005, 6, 139.
(b) Roberts, B. A.; Strauss, C. R. Acc. Chem. Res. 2005, 38, 653.
(c) Tanaka, K.; Toda, F. Chem. Rev. 2000, 100, 1025.
[3] (a) Abedini-Torghabeh, J.; Eshghi, H.; Bakavoli, M.; Rahimizadeh, Res. Chem. Intermed. 2015, 41, 3649.
(b) Zhang, G.-P.; Zhu, C.; Liu, D.-Y.; Pan, J.-K.; Zhang, J.; Hu, D.-Y.; Song, B.-A. Tetrahedron 2017, 73, 129.
[4] (a) Hugerschoff, H. Ber. Dtsch. Chem. Ges. 1901, 34, 3130.
(b) Hugerschoff, H. Ber. Dtsch. Chem. Ges. 1903, 36, 3121.
(c) Jordan, A. D.; Luo, C.; Reitz, A. B. J. Org. Chem. 2003, 68, 8693.
(d) Le, Z.-G.; Xu, J.-P.; Rao, H.-Y.; Ying, M. J. Heterocycl. Chem. 2006, 43, 1123.
[5] Yella, R.; Murru, S.; Ali, A. R.; Patel, B. K. Org. Biomol. Chem. 2010, 8, 3389.
[6] Yella, R.; Khatun, N.; Rout, S. K.; Patel, B. K. Org. Biomol. Chem. 2011, 9, 3235.
[7] Sahoo, S. K.; Khatun, N.; Gogoi, A.; Deb, A.; Patel, B. K. RSC Adv. 2013, 3, 438.
[8] (a) Singh, F. V.; Wirth, T. Synthesis 2013, 45, 2499.
(b) Zhdankin, V. V. Chem. Rev. 2008, 108, 5299.
(c) Varma, R. S.; Dahiya, R.; Saini, R. K. Tetrahedron Lett. 1997, 38, 7029.
[9] (a) Xie, Y.-Y.; Liu, J.-W.; Huang, Y.-Y.; Yao, L.-X. Tetrahedron Lett. 2015, 56, 3793.
(b) Kumar, D.; Kumar, N. M.; Chang, K.-H.; Gupta, R.; Shah, K. Bioorg. Med. Chem. Lett. 2011, 21, 5897.
(c) Abdellaoui, H.; Xu, J.-X. Tetrahedron 2014, 70, 4323.
(d) Jiang, M.; Shi, M. Tetrahedron 2009, 65, 798.
(e) Chen, T. H.; Kwong, K. W.; Lee, N. F.; Ranburger, D.; Zhang, R. Inorg. Chim. Acta 2016, 451, 65.
(f) Fu, X.-P.; Wei, Z.-J.; Xia, C.-C.; Shen, C.; Xu, J.; Yang, Y.; Wang, K.; Zhang, P.-F. Catal. Lett. 2017, 147, 1.
/
〈 |
|
〉 |