Chinese Journal of Organic Chemistry >
Research Progress of Trifluoromethylation with Sodium Trifluoromethanesulfinate
Received date: 2017-09-08
Revised date: 2017-11-09
Online published: 2017-12-08
Supported by
Project supported by the Natural Science Foundation of Jiangsu Province (No. BK20140136) and the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions (No. PPZY2015B146).
Trifluoromethyl can increase the chemical and metabolic stability of drugs, improve its lipophilicity and bioavailability, and furthermore, enhance drug binding selectivities. Sodium trifluoromethanesulfinate (CF3SO2Na) is a stable inexpensive reagent, which has been widely used in the field of organic fluorine chemistry. The recent progress (2014~2017) in trifluoromethylation by employing CF3SO2Na as the trifluoromethyl source is summarized. In addition, the reactions of bifunctionalization, trifluoromethylation of aromatics, trifluoromethylthioization and other types of reactions are described respectively, with their applications and reaction mechanism. It is hoped that this review can be referred to in the studies of trifluoromethyl introduction.
Hui Renjie , Zhang Shiwei , Tan Zheng , Wu Xiaopei , Feng Bainian . Research Progress of Trifluoromethylation with Sodium Trifluoromethanesulfinate[J]. Chinese Journal of Organic Chemistry, 2017 , 37(12) : 3060 -3075 . DOI: 10.6023/cjoc201709011
[1] Grem J. L. Invest. New Drugs 2000, 18, 299
[2] Krik, K. L. Org. Process Res. Dev. 2008, 12, 305
[3] Yang, B.; Xu, X. H.; Qing, F. L. Org. Lett. 2015, 17, 1906.
[4] Liu, X.; Xu, C.; Wang, M. Chem. Rev. 2015, 115, 683.
[5] Yang, F.; Klumphu, P.; Liang, Y. M. Chem. Commun. 2014, 50, 936.
[6] Ji, Y.; Brueckl, T.; Baxter, R. D.; Fujiwara, Y.; Seiple, I. B.; Su, S.; Blackmond, D. G.; Baran, P. S. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 14411.
[7] Umemoto, T. Chem. Rev. 1996, 96, 1757.
[8] Eisenberger, P.; Gischig, S.; Togni, A. Chemistry 2006, 12, 2579.
[9] Ryota, H.; Toshiaki, I.; Kohsuke, A. Chemistry 2014, 20, 2750.
[10] Morimoto, H.; Tsubogo, T.; Litvinas, N. D. Angew Chem., Int. Ed. 2011, 50, 3793.
[11] Tomashenko, O. A.; Escudero, A. E. C.; Martínez, B. M. Angew Chem., Int. Ed. 2011, 50, 7655.
[12] Zheng, J.; Lin, J. H.; Deng, X. Y. Org. Lett. 2015, 17, 532.
[13] Maji, A.; Hazra, A.; Maiti, D. Org. Lett. 2014, 16, 4524.
[14] (a) Lefebvre, Q. Synlett 2016, 28, 19.
(b) Tordeux, M.; Langlois, B. R.; Wakselman, C. J. Org. Chem. 1989, 54, 2452.
[15] Zhang, C. Adv. Synth. Catal. 2014, 356, 2895.
[16] Lu, Y.; Li, Y.; Zhang, R. J. Fluorine Chem. 2014, 161, 128.
[17] Hang, Z.; Li, Z.; Liu, Z. Q. Org. Lett. 2014, 16, 3648.
[18] Zhu, L.; Wang, L. S.; Li, B. Chem. Commun. 2016, 52, 6371.
[19] Yang, B.; Xu, X. H.; Qing, F. L. Chin. J. Chem. 2016, 34, 465.
[20] Yang, Y.; Liu, Y.; Jiang, Y.; Zhang, Y.; Vicic, D. A. J. Org. Chem. 2015, 80, 6639.
[21] Yang, B.; Xu, X. H.; Qing, F. L. Org. Lett. 2015, 17, 1906.
[22] Liu, X.; Xiong, F.; Huang, X.; Xu, L.; Li, P.; Wu, X. Angew. Chem., Int. Ed. 2013, 52, 6962.
[23] Chen, Z. M.; Bai, W.; Wang, S. H.; Yang, B. M.; Tu, Y. Q.; Zhang, F. M. Angew. Chem., Int. Ed. 2013, 52, 9781.
[24] Egami, X.; Shimizu, R.; Usuiac, Y.; Sodeoka, M. Chem. Commun. 2013, 49, 7346.
[25] Huang, H. L.; Yan, H.; Gao, G. L. Asian J. Org. Chem. 2015, 4, 674.
[26] Lu, Q.; Liu, C.; Huang, Z. Chem. Commun. 2014, 50, 14101.
[27] Liu, C.; Lu, Q.; Huang, Z. Org. Lett. 2015, 17, 6034.
[28] Li, B.; Fan, D.; Yang C; Xia W. Org. Biomol. Chem. 2016, 14, 5293.
[29] Yu, J.; Yang, H.; Fu, H. Adv. Synth. Catal. 2014, 356, 3669.
[30] Mu, X.; Wu, T.; Wang, H. Y.; Guo, Y. L.; Liu, G. S. J. Am. Chem. Soc. 2012, 134, 878.
[31] Wei, W.; Wen, J.; Yang, D. J. Org. Chem. 2014, 79, 4225.
[32] Hua, H. L.; He, Y. T.; Qiu, Y. F. Chem.-Eur. J. 2015, 21, 1468.
[33] Zhang, L. Z.; Li, Z. J.; Liu, Z. Q. Cheminform 2014, 46, 3648.
[34] Jana, S.; Verma, A.; Kadu, R.; Kumar, S. Chem. Sci. 2017, 8, 6633.
[35] Wu, L. H.; Zhao, K.; Shen, Z. L.; Loh, T. P. Org. Chem. Front. 2017, 4, 1872.
[36] Martin, R.; Reddy, Y. V.; Shen, Y. Angew. Chem., Int. Ed. 2017, 56, 10915.
[37] Zhang, X.; Huang, P.; Li, Y. Org. Biomol. Chem. 2015, 13, 10917.
[38] Zhang, K.; Xu, X. H.; Qing, F. L. J. Org. Chem. 2015, 80, 7658.
[39] Wu, M.; Ji, X.; Dai, W. J. Org. Chem. 2014, 79, 8984.
[40] (a) Cai, S. J.; Chen, C.; Sun, Z. L.; Xi, C. J. Chem. Commun. 2013, 49, 4552.
(b) Zhang, L. S.; Chen, K.; Chen, G. H.; Li, B. J.; Luo, S.; Guo, Q. Y.; Wei, J. B.; Shi, Z. J. Org. Lett. 2013, 15, 10.
[41] Ji, X. M.; Wei, L.; Chen, F. RSC Adv. 2015, 46, 29766.
[42] (a) Cho, E. J.; Senecal, T. D.; Kinzel, T. Y.; Zhang, Y.; Watson, D. A.; Buchwald, S. L. Science 2010, 328, 1679.
(b) Oishi, M.; Kondo H.; Amii, H. Chem. Commun. 2009, 1909.
(c) Chu, L.; Qing, F. L. Org. Lett. 2010, 12, 5060.
(d) Senecal, T. D.; Parsons, A. T.; Buchwald, S. L. J. Org. Chem. 2011, 76, 1174.
(e) Jiang, X.; Chu, L.; Qing, F. L. J. Org. Chem. 2012, 77, 1251.
(f) Herrmann, A. T.; Smith, L. L.; Zakarian, A. J. Am. Chem. Soc. 2012, 134, 6976.
(g) Sato, K.; Omote, M.; Ando, A.; Kmadaki, I. Org. Lett. 2004, 6, 4359.
(h) Shimizu, R.; Egami, H.; Nagi, T.; Chae, J.; Hamashima, Y.; Sodeoka, M. Tetrahedron Lett. 2010, 51, 5947.
(i) Liu, T.; Shen, Q. Org. Lett. 2011, 13, 2342.
(j) Nagib, D. A. M.; MacMillan, D. W. C. Nature 2011, 480, 224.
[43] Fennewald, J. C.; Lipshutz, B. H. Green Chem. 2014, 16, 1097.
[44] Cao, X.; Pan, X.; Zhou, P. Chem. Commun. 2014, 50, 3359.
[45] Lu, Y.; Li, Y.; Zhang, R. J. Fluorine Chem. 2014, 161, 128.
[46] Pair, E.; Monteiro, N.; Bouyssi, D.; Baudoin, O. Angew. Chem., Int. Ed. 2013, 52, 5346.
[47] Tan, Z.; Zhang, S. W.; Zhang, Y. J. Org. Chem. 2017, 82, 9384.
[48] Jiang, H. F.; Huang, W.; Yu, Y.; Yi, S. J.; Li, J. W.; Wu, W. Q. Chem. Commun. 2017, 53, 7473.
[49] Li, C. F.; Suzuki, K.; Yamaguchi, K.; Mizuno, N. New J. Chem. 2017, 41, 1471.
[50] Simon, R. C.; Busto, E.; Richter, N.; Resch, V.; Houk, K. N.; Kroutil W. Nat. Commun. 2016, 7, 13323.
[51] Bu, M.; Lu, G.; Cai, C. T. Org. Chem. Front. 2017, 4, 266.
[52] Yang, Y.; Xu, L.; Yu, S. Chem.-Eur. J. 2016, 22, 858.
[53] Zhao, X.; Wei, A. Q.; Yang, B.; Li, T. J.; Li, Q.; Qiu, D.; Lu, K. J. Org. Chem. 2017, 82, 9175.
[54] Jiang, L.; Qian, J.; Yi, W.; Lu, G.; Cai, C.; Zhang, W. Angew. Chem., Int. Ed. 2015, 54, 14965.
[55] Yang, Y.; Xu, L.; Yu, S.; Liu, X.; Zhang, Y.; Vicic, D. A. Chem.-Eur. J. 2016, 22, 858.
[56] Chachignon, H.; Maeno, M.; Kondo, H.; Shibata, N.; Cahard, D. Org. Lett. 2016, 18, 2467.
[57] Hua, L. N.; Li, H.; Qing, F. L. Org. Biomol. Chem. 2016, 14, 8443.
[58] (a) Shangary, S.; Johnson, D. E. Leukemia 2003, 17, 1470.
(b) Oltersdorf, T.; Elmore, S. W.; Shoemaker, A. R.; Armstrong, R. C.; Augeri, D. J.; Belli, B. A.; Bruncko, M.; Deckwerth, T. L.; Dinges, J.; Hajduk, P. J.; Joseph, M. K.; Kitada, S.; Korsmeyer, S. J.; Kunzer, A. R.; Letai, A.; Li, C.; Mitten, M. J.; Nettesheim, D. G.; Ng, S.; Nimmer, P. M.; O'Connor, J. M.; Oleksijew, A.; Petros, A. M.; Reed, J. C.; Shen, W.; Tahir, S. K.; Thompson, C. B.; Tomaselli, K. J.; Wang, B.; Wendt, M. D.; Zhang, H.; Fesik, S. W.; Rosenberg, S. H. Nature 2005, 435, 677;
(c) Morizawa, Y.; Okazoe, T.; Wang, S. Z.; Sasaki, J.; Ebisu, H.; Nishikawa, M.; Shinyama, H. J. J. Fluorine Chem. 2001, 109, 83.
[59] Smyth, L. A. J. Org. Chem. 2016, 81, 1285.
[60] Konik, Y. A.; Kudrjashova, M.; Konrad N.; Kaabel, S.; Järving, I.; Lopp, M.; Kananovich, D. G. Org. Biomol. Chem. 2017, 15, 4635.
[61] van der Werf, A.; Hribersek, M.; Selander, N. Org. Lett. 2017, 19, 2374.
[62] Yang, H. B.; Selander, N. Org. Biomol. Chem. 2017, 15, 1771.
[63] Han, J. B.; Yang, L.; Chen, X.; Zha, G. F.; Zhang, C. P. Adv. Synth. Catal. 2016, 358, 4119.
[64] Liao, Y. Y.; Deng, J. C.; Ke, Y. P.; Zhong, X. L.; Xu, L.; Tang, R. Y.; Zheng, W. Chem. Commun. 2017, 53, 6073.
/
〈 |
|
〉 |