Reviews

Dye-Sensitized Solar Cells: Progress on Robust Anchor Groups in Dyes

  • Tian Yajuan ,
  • Cai Ning ,
  • Chen Yatong ,
  • Qian Sainan ,
  • Huo Yanping
Expand
  • a School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006;
    b Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Cheimstry, Chinese Academy of Sciences, Shanghai 200032

Received date: 2017-09-08

  Revised date: 2017-11-16

  Online published: 2017-12-08

Supported by

Project supported by the Natural Science Foundation of Guangdong Province (No. 2017A030310039), the National Natural Science Foundation of China (Nos. 61671162, 21372051) and the Science and Technology Planning Project of Guangdong Province (No. 2016A010103031).

Abstract

As a type of potential photovoltaic device, dye-sensitized solar cells (DSSCs) have attracted tremendous attention due to its high cost-effective and simple manufacturing process. In the device, dye molecules attach on the metal oxide surface via chemical bonds between anchor substituents and metal oxide substrate, realizing the light harvesting and photoelectron injection. Traditionally, carboxylic acids, such as benzoic acid and cyanoacrylic acid groups, have been widely utilized as the anchor groups in DSSCs. However, the detachment of dye molecules from metal oxide surface during device operation and consequent long-term stability issues cannot be ignored. Therefore, in view of durability of DSSCs in practical application, various anchor groups with a better ability to graft on the metal oxide have been explored. Several robust anchor groups in recent years and corresponding photovoltaic parameters are reviewed and the relationship between molecular structures and device performance is also discussed. The research progress of anchoring groups in photocatalytic hydrogen and quantum dot sensitized solar cells (QDSSCs) is also examined.

Cite this article

Tian Yajuan , Cai Ning , Chen Yatong , Qian Sainan , Huo Yanping . Dye-Sensitized Solar Cells: Progress on Robust Anchor Groups in Dyes[J]. Chinese Journal of Organic Chemistry, 2018 , 38(5) : 1085 -1106 . DOI: 10.6023/cjoc201709014

References

[1] Sorensen, B. Renewable Energy, 1st ed, Academic Press, London, 1979.
[2] O'Regan, B.; Grätzel, M. Nature 1991, 353, 737.
[3] Yella, A.; Lee, H. W.; Tsao, H. N.; Yi, C.; Chandiran, A. K.; Nazeeruddin, M. K.; Diau, E. W. G.; Yeh, C. Y.; Zakeeruddin, S. M.; Grätzel, M. Science 2011, 334, 629.
[4] (a) Wang, Y.; Chen, B.; Wu, W.; Li, X.; Zhu, W.; Tian, H.; Xie, Y. Angew. Chem., Int. Ed. 2014, 53, 10779.
(b) Wei, T.; Sun, X.; Li, X.; Ågren, H.; Xie, Y. ACS Appl. Mater. Interfaces 2015, 39, 21956.
(c) Xie, Y.; Tang, Y.; Wu, W.; Wang, Y.; Liu, J.; Liu, X.; Tian, H.; Zhu, W. J. Am. Chem. Soc. 2015, 44. 14055.
(d) Tang, Y.; Wang, Y.; Li, X.; Ågren, H.; Zhu, W.; Xie, Y. ACS Appl. Mater. Interfaces 2015, 50, 27976.
(e) Song, H.; Li, X.; Ågren, H.; Xie, Y. Dyes Pigm. 2017, 137, 421.
[5] (a) Yang, H. W.; Guan, J. J.; Gao, F. X.; He, X. P.; Wang, A.; Sun, B. D.; Zhang, X. Q.; Zhang, B.; Feng, Y. Q. Chin. J. Org. Chem. 2015, 35, 2237(in Chinese). (杨贺玮, 官俊杰, 高峰贤, 何欣平, 王安, 孙宝德, 张学强, 张宝, 冯亚青, 有机化学, 2015, 35, 2237.)
(b) Zhou, D.; Cai, N.; Long, H.; Zhang, M.; Wang, Y.; Wang, P. J. Phys. Chem. C 2011, 115, 3163.
(c) Xu, M.; Zhou, D.; Cai, N.; Liu, J.; Li, R.; Wang, P. Energy Environ. Sci. 2011, 4, 4735.
(d) Li, R.; Liu, J.; Cai, N.; Zhang, M.; Wang, P. J. Phys. Chem. B 2010, 114, 4461.
(e) Cai, N.; Moon, S. J.; Cevey-Ha, L.; Moehl, T.; Humphry-Baker, R.; Wang, P.; Zakeeruddin, S. M.; Grätzel, M. Nano Lett. 2011, 11, 1452.
[6] (a) Cao, Y.; Cai, N.; Wang, Y.; Li, R.; Yuan, Y.; Wang, P. Phys. Chem. Chem. Phys. 2012, 14, 8282.
(b) Cai, N.; Zhang, J.; Xu, M.; Zhang, M.; Wang, P. Adv. Funct. Mater. 2013, 23, 3539.
(c) Cai, N.; Wang, Y.; Xu, M.; Fan, Y.; Li, R.; Zhang, M.; Wang, P. Adv. Funct. Mater. 2013, 23, 1846.
(d) Cai, N.; Li, R.; Wang, Y.; Zhang, M.; Wang, P. Energy Environ. Sci. 2013, 6, 139.
[7] Kalyanasundaram, K.; Grätzel, M. Coord. Chem. Rev. 1998, 177, 347.
[8] Mathew, S.; Yella, A.; Gao, P.; Humphry-Baker, R.; Curchod, B. F. E.; Ashari-Astani, N.; Tavernelli, I.; Rothlisberger, U.; Nazeeruddin, M. K.; Grätzel, M. Nat. Chem. 2014, 6, 242.
[9] Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H. Chem. Rev. 2010, 110, 6595.
[10] Galoppini, E. Coord. Chem. Rev. 2004, 248, 1283.
[11] Péchy, P.; Rotzinger, F. P.; Nazeeruddin, M. K.; Kohle, O.; Zakeeruddin, S. M.; Humphry-Baker, R.; Grätzel, M. J. Chem. Soc. Chem. Commun. 1995, 65.
[12] Park, H.; Bae, E.; Lee, J. J.; Park, J.; Choi, W. J. Phys. Chem. B 2006, 110, 8740.
[13] Odobel, F.; Blart, E.; Lagree, M.; Villieras, M.; Boujtita, H.; EIMurr, N.; Caramori, S.; Alberto Bignozzi, C. J. Mater. Chem. 2003, 13, 502.
[14] Lopez-Duarte, I.; Wang, M.; Humphry-Baker, R.; Ince, M.; Martínez-Díaz, M. V.; Nazeeruddin, M. K.; Torres, T.; Grätzel, M. Angew. Chem., Int. Ed. 2012, 51, 1895.
[15] Mulhern, K. R.; Orchard, A.; Watson, D. F.; Detty, M. R. Langmuir 2012, 28, 7071.
[16] Brown, D. G.; Schauer, P. A.; Borau-Garcia, J.; Fancy, B. R.; Berlinguette, C. P. J. Am. Chem. Soc. 2013, 135, 1692.
[17] He, H.; Gurunga, A.; Si, L. Chem. Commun. 2012, 48, 5910.
[18] Si, L.; He, H.; Zhu, K. New J. Chem. 2014, 38, 1565.
[19] Mao, J.; He, N.; Ning, Z.; Zhang, Q.; Guo, F.; Chen, L.; Wu, W.; Hua, J.; Tian, H. Angew. Chem., Int. Ed. 2012, 51, 9873.
[20] Zhang, J.; Li, H.-B.; Zhang, J.-Z.; Wu, Y.; Geng, Y.; Fu, Q.; Su, Z.-M. J. Mater. Chem. A 2013, 1, 14000.
[21] Mao, J.; Zhang, X.; Liu, S.-H.; Shen, Z.; Li, X.; Wu, W.; Chou, P.-T.; Hua, J. Electrochim. Acta 2015, 179, 179.
[22] Matsui, M.; Tanaka, N.; Kubota, Y.; Funabiki, K.; Jin, J.; Higashijima, S.; Miura, H.; Manseki, K. RSC Adv. 2016, 6, 33111.
[23] Qian, X.; Yan, R.; Hang, Y.; Lv, Y.; Zheng, L.; Xu, C.; Hou, L. Dyes Pigm. 2017, 139, 274.
[24] Qian, X.; Lan, X.; Yan, R.; He, Y.; Huang, J.; Hou, L. Electrochim. Acta 2017, 232, 377.
[25] Yu, F.; Cui, S.-C.; Li, X.; Peng, Y.; Yu, Y.; Kang, Y.; Zhang, S.-C.; Li, J.; Liu, J.-G.; Hua, J. Dyes Pigm. 2017, 139, 7.
[26] Horiuchi, T.; Miuraa, H.; Uchida, S. Chem. Commun. 2003, 3036.
[27] Horiuchi, T.; Miura, H.; Uchida, S. J. Photochem. Photobiol., A Chem. 2004, 164, 29.
[28] Horiuchi, T.; Miura, H.; Sumioka, K.; Uchida, S. J. Am. Chem. Soc. 2004, 126, 12218.
[29] Chen, Y.; Li, C.; Zeng, Z.; Wang, W.; Wang, X.; Zhang, B. Chem. Lett. 2005, 6, 762.
[30] Li, S.-L.; Jiang, K.-J.; Shao, K.-F.; Yang, L.-M. Chem. Commun. 2006, 2792.
[31] Tian, H.; Yang, X.; Chen, R.; Pan, Y.; Li, L.; Hagfeldt, A.; Sun, L. Chem. Commun. 2007, 3741.
[32] Liang, M.; Xu, W.; Cai, F.; Chen, P.; Peng, B.; Chen, J.; Li, Z. J. Phys. Chem. C 2007, 111, 4465.
[33] Tian, H.; Yang, X.; Pan, J.; Chen, R.; Liu, M.; Zhang, Q.; Hagfeldt, A.; Sun, L. Adv. Funct. Mater. 2008, 18, 3461.
[34] Ito, S.; Miura, H.; Uchida, S.; Takata, M.; Sumioka, K.; Liska, P.; Comte, P.; Péchy, P.; Grätzel, M. Chem. Commun. 2008, 5194.
[35] Zhang, X.-H.; Yao, Y.-S.; Li, C.; Wang, W.-B.; Cheng, X.-X.; Wang, X.-S.; Zhang, B.-W. Chin. J. Chem. 2008, 26, 929.
[36] Marinado, T.; Hagberg, D. P.; Hedlund, M.; Edvinsson, T.; Johansson, E. M. J.; Boschloo, G.; Rensmo, H.; Brinck, T.; Sun, L.; Hagfeldt, A. Phys. Chem. Chem. Phys. 2009, 11, 133.
[37] Pei, J.; Peng, S.; Shi, J.; Liang, Y.; Tao, Z.; Liang, J.; Chen, J. J. Power Sources 2009, 187, 620.
[38] Ahn, H. J.; Thogiti, S.; Cho, J. M.; Jang, B. Y.; Kim, J. H. Electron. Mater. Lett. 2015, 5, 882.
[39] Gupta, K. S. V.; Singh, S. P.; Islam, A.; Han, L.; Chandrasekharam, M. Electrochim. Acta 2015, 174, 581.
[40] Kathiravan, A.; Panneerselvam, M.; Sundaravel, K.; Pavithra, N.; Srinivasan, V.; Anandand, S.; Jaccob, M. Phys. Chem. Chem. Phys. 2016, 18, 13332.
[41] Kathiravan, A.; Srinivasan, V.; Khamrang, T.; Velusamy, M.; Jaccob, M.; Pavithra, N.; Anandane, S.; Velappan, K. Phys. Chem. Chem. Phys. 2017, 19, 3125.
[42] Hai, N. T.; Bao, L. Q.; Thogiti, S.; Cheruku, R.; Ahn, K.-S.; Kim, J. H. J. Nanosci. Nanotechnol. 2017, 5, 3181.
[43] Ooyama, Y.; Inoue, S.; Nagano, T.; Kushimoto, K.; Ohshita, J.; Imae, I.; Komaguchi, K.; Harima, Y. Angew. Chem., Int. Ed. 2011, 50, 7429.
[44] Ooyama, Y.; Nagano, T.; Inoue, S.; Imae, I.; Komaguchi, K.; Ohshita, J.; Harima, Y. Chem.-Eur. J. 2011, 17, 14837.
[45] Zhang, M.-D.; Xie, H.-X.; Ju, X.-H.; Qin, L.; Yang, Q.-X.; Zheng, H.-G.; Zhou, X.-F. Phys. Chem. Chem. Phys. 2013, 15, 634.
[46] Ooyama, Y.; Yamaguchi, N.; Imae, I.; Komaguchi, K.; Ohshita, J.; Harima, Y. Chem. Commun. 2013, 49, 2548.
[47] Wang, L.; Yang, X.; Li, S.; Cheng, M.; Sun, L. RSC Adv. 2013, 3, 13677.
[48] Wang, L.; Yang, X.; Zhao, J.; Zhang, F.; Wang, X.; Sun, L. ChemSusChem 2014, 7, 2640.
[49] Mao, J.; Wang, D.; Liu, S.-H.; Hang, Y.; Xu, Y.; Zhang, Q.; Wu, W.; Chou, P.-T.; Hua, J. Asian J. Org. Chem. 2014, 3, 153.
[50] (a) Cong, J.; Yang, X.; Liu, J.; Zhao, J.; Hao, Y.; Wang, Y.; Sun, L. Chem. Commun. 2012, 48, 6663.
(b) Ooyama, Y.; Hagiwara, Y.; Oda, Y.; Mizumo, T.; Harima, Y.; Ohshita, J. New J. Chem. 2013, 37, 2336.
[51] Massin, J.; Ducasse, L.; Toupance, T.; Olivier, C. J. Phys. Chem. C 2014, 118, 10677.
[52] Zhang, L.; Cole, J. M.; Dai, C. Appl. Mater. Interfaces 2014, 6, 7535.
[53] Daphnomili, D.; Landrou, G.; Prakash Singh, S.; Thomas, A.; Yesudas, K.; Bhanuprakash, K.; Sharma, G. D.; Coutsolelos, A. G. RSC Adv. 2012, 2, 12899.
[54] Daphnomili, D.; Sharma, G. D.; Biswas, S.; Justin Thomas, K. R.; Coutsolelos, A. G. J. Photochem. Photobiol., A:Chem. 2013, 253, 88.
[55] Mai, C.-L.; Moehl, T.; Hsieh, C.-H.; Decoppet, J. D.; Zakeeruddin, S. M.; Grätzel, M.; Yeh, C. Y. ACS Appl. Mater. Interfaces 2015, 7, 14975.
[56] Li, T.-Y.; Su, C.; Akula, S. B.; Sun, W.-G.; Chien, H.-M.; Li, W.-R. Org. Lett. 2016, 18, 3386.
[57] Asao, T.; Kikuchi, Y. Chem. Lett. 1972, 413.
[58] Barret, M. C.; Mahon, M. F.; Molloy, K. C.; Steed, J. W.; Wright, P. Inorg. Chem. 2001, 40, 4384.
[59] Nomiya, K.; Onodera, K.; Sukagoshi, K.; Shimada, K.; Yoshizawa, A.; Itoyanagi, T. A.; Sugie, A.; Tsuruta, S.; Sato, R.; Kasuga, N. C. Inorg. Chim. Acta 2009, 362, 43.
[60] Higashino, T.; Fujimori, Y.; Sugiura, K.; Tsuji, Y.;Ito, S.; Imahori, H. Angew. Chem., Int. Ed. 2015, 54, 9052.
[61] Cocozza, C.; Tsao, C. C. G.; Cheah, S. F.; Kraemer, S. M.; Raymond, K. N.; Miano, T. M.; Sposito, G. Geochim. Cosmochim. Acta 2002, 66, 431.
[62] Yang, J.; Bremer, P. J.; Lamont, I. L.; McQuillan, A. J. Langmuir 2006, 22, 10109.
[63] Upritchard, H. G.; Yang, J.; Bremer, P. J.; Lamont, I. L.; McQuillan, A. J. Langmuir 2007, 23, 7189.
[64] McNamara, W. R.; Snoeberger Ⅲ, R. C.; Li, G.; Richter, C.; Allen, L. J.; Milot, R. L.; Schmuttenmaer, C. A.; Crabtree, R. H.; Brudvig, G. W.; Batista, V. S. Energy Environ. Sci. 2009, 2, 1173.
[65] McNamara, W. R.; Milot, R. L.; Song, H.; Snoeberger, R. C.; Batista, V. S.; Schmuttenmaer, C. A.; Brudvig, G. W.; Crabtree, R. H. Energy Environ. Sci. 2010, 3, 917.
[66] Brewster, T. P.; Konezny, S. J.; Sheehan, S. W.; Martini, L. A.; Schmuttenmaer, C. A.; Batista, V. S.; Crabtree, R. H. Inorg. Chem. 2013, 52, 6752.
[67] Koenigsmann, C.; Ripolles, T. S.; Brennan, B. J.; Negre, C. F. A.; Koepf, M.; Durrell, A. C.; Milot, R. L.; Torre, J. A.; Crabtree, R. H.; Batista, V. S.; Brudvig, G.; Bisquert, J.; Schmuttenmaer, C. Phys. Chem. Chem. Phys. 2014, 16, 16629.
[68] Brennan, B. J.; Koenigsmann, C.; Materna, K. L.; Kim, P. M.; Koepf, M.; Crabtree, R. H.; Schmuttenmaer, C. A.; Brudvig, G. W. J. Phys. Chem. C 2016, 23, 12495.
[69] Bowman, D. N.; Mukherjee, S.; Barnes, L. J.; Jakubikova, E. J. Phys.:Condens. Matter. 2015, 27, 134205.
[70] Higashino, T.; Kurumisawa, Y.; Cai, N.; Fujimori, Y.; Tsuji, Y.; Nimura, S.; Packwood, D.; Jaehong Park, J.; Imahori, H. ChemSusChem 2017, 10, 3347.
[71] Politano, A.; Cattelan, M.; Boukhvalov, D. W.; Campi, D.; Cupolillo, A.; Agnoli, S.; Apostol, N. G.; Lacovig, P.; Lizzit, S.; Farías, D.; Chiarello, G.; Granozzi, G.; Larciprete, R. ACS Nano 2016, 10, 4543.
[72] Tsuji, K.; Tomita, O.; Higashi, M.; Abe, R. ChemSusChem 2016, 9, 2201.
[73] Zhang, Y.; Sun, Z.; Cheng, S.; Yan, F. ChemSusChem 2016, 9, 813.
[74] Kim, H. G.; Borse, P. H.; Choi, W.; Choi, W.; Lee, J. S. Angew. Chem., Int. Ed. 2005, 44, 4585.
[75] Zhang, X.; Peng, T.; Song, S. J. Mater. Chem. A 2016, 4, 2365.
[76] Fan, K.; Li, F. S.; Wang, L.; Daniel, Q.; Gabrielsson, E.; Sun, L. Phys. Chem. Chem. Phys. 2014, 16, 25234.
[77] Fan, K.; Li, F.; Wang, L.; Daniel, Q.; Gabrielsson, E.; Sun, L. J. Am. Chem. Soc. 2015, 137, 9153.
[78] Li, X.; Hu, Y.; Sanchez-Molina, I.; Zhou, Y.; Yu, F.; Haque, S. A.; Wu, W.; Hua, J.; Tian, H.; Robertson, N. J. Mater. Chem. A 2015, 3, 21733.
[79] Rao, C. N. R.; Lingampalli, S. R. Small 2016, 12, 16.
[80] Manfredi, N.; Cecconi, B.; Calabrese, V.; Minotti, A.; Peri, F.; Ruffo, R.; Monai, M.; Romero-Ocaña, I.; Montini, T.; Fornasiero, P.; Abbotto, A. Chem. Commun. 2016, 52, 6977.
[81] Maeda, K.; Eguchi, M.; Youngblood, W. J.; Mallouk, T. E. Chem Mater. 2008, 20, 6770.
[82] Bae, E. Y.; Choi, W.; Park, J.; Shin, H. S.; Kim, S. B.; Lee, J. S. J. Phys. Chem. B 2004, 108, 14093.
[83] Yu, F.; Cui, S.-C.; Li, X.; Peng, Y.; Yu, Y.; Yun, K.; Zhang, S.-C.; Li, J.; Liu, J.-G.; Hua, J. Dyes Pigm. 2017, 139, 7.
[84] Guerrero, G.; Alauzun, J. G.; Granier, M.; Laurencin, D.; Mutin, P. H. Dalton Trans. 2013, 42, 12569.
[85] Baker, D. R.; Kamat, P. V. Adv. Funct. Mater. 2009, 19, 805.
[86] Meng, Q. B. Acta Chim. Sinica 2015, 73, 161(in Chinese). (孟庆波, 化学学报, 2015, 73, 161.)
[87] Robel, I.; Subramanian, V.; Kuno, M.; Kamat, P. V. J. Am. Chem. Soc. 2006, 128, 2385.
[88] Ardalan, P.; Brennan, T. P.; Lee, H. B. R.; Bakke, J. R.; Ding, I. K.; McGehee, M. D.; Bent, S. F. ACS Nano 2011, 5, 1495.
[89] Yu, L.; Li, Z.; Song, H. J. Mater. Sci.:Mater. Electron. 2017, 28, 2867.
[90] Mora-Seró, I.; Giménez, S.; Moehl, T.; Fabregat-Santiago, F.; Lana-Villareal, T.; Gómez, R.; Bisquert, J. Nanotechnology 2008, 19, 424007.

Outlines

/