Articles

Theoretical Study on the Conjugate Addition of Asymmetric Michael Addition of trans-1-Nitro-2-phenylethylene to 2-Methylpropion-aldehyde Catalyzed by Cinchona Alkaloid Derived Primary Amine

  • Jiang Haiyang ,
  • Li Qiang ,
  • Qi Qingjie ,
  • Yang Chenxi ,
  • Zhang Dan
Expand
  • a College of Science, Liaoning Technological University, Fuxxin 123000;
    b College of Safety Science and Engineering, Liaoning Technological University, Fuxin 123000

Received date: 2017-03-22

  Revised date: 2017-06-14

  Online published: 2017-12-15

Supported by

Project supported by the China Postdoctoral Science Foundation Project (No. 2016M591451), the Natural Science Foundation of Liaoning Province (No. 2017054028), the Liaoning Education Department General Project (No. LJYL044), the Sixth Agricultural Technology Problems Foundation of Liaoning Technical University (No. 20160086T) and the Undergraduate Innovation and Entrepreneurship Training Program of Liaoning Province (No. 201610147000044).

Abstract

The theoretical study is presented for the Michael addition reaction between trans-1-nitro-2-phenylethylene and 2-methylpropionaldehyde catalyzed by (9S)-9-amino-6'-methoxy-10,11-dihydrocinchonan (9-epi-DHQDA) and benzoic acid. All structures, including the reactants, intermediates, transition states and products were optimized. Transition states have been confirmed by the corresponding vibration analysis and intrinsic reaction coordinate (IRC). In addition, nature bond orbital (NBO) and atoms in molecules (AIM) theories have been used to analyze orbital interactions and bond natures. Calculations indicate that the benzoic acid might undergo a proton step to the 9-epi-DHQDA to produce the iminium intermediate. Then the iminium serves as a reactive acceptor to participate in the subsequent nucleophilic addition. Next, a proton transfer process from the tertiary amine to nitronate carbon is found to be rate-determining step, and the enantioselectivity of the catalyzed Michael reaction is also controlled by this step. Finally, one water molecule participates in hydrolysis and C=O bond formation, and results in the formation of product and recovery of catalyst.

Cite this article

Jiang Haiyang , Li Qiang , Qi Qingjie , Yang Chenxi , Zhang Dan . Theoretical Study on the Conjugate Addition of Asymmetric Michael Addition of trans-1-Nitro-2-phenylethylene to 2-Methylpropion-aldehyde Catalyzed by Cinchona Alkaloid Derived Primary Amine[J]. Chinese Journal of Organic Chemistry, 2018 , 38(4) : 825 -831 . DOI: 10.6023/cjoc201703037

References

[1] Dalko, P. I.; Moisan, L. Angew. Chem., Int. Ed. 2004, 43, 5138.
[2] Seayad, J.; List, B. Org. Biomol. Chem. 2005, 3, 719.
[3] Berkessel, A.; Gröger, H. Asymmetric Organocatalysis, Wiley-VCH, Weinheim, 2005.
[4] Dalko, P. I. Enantioselective Organocatalysis, Wiley-VCH, Weinheim, 2007.
[5] Wang, T. L.; Yu, Z. Y.; Hoon, D. L.; Lan, Y.; Lu, Y. X. J. Am. Chem. Soc. 2016, 138, 265.
[6] Wang, T. L.; Yu, Z. Y.; Hoon, D. L.; Huang, K. W.; Lan, Y.; Lu, Y. X. Chem. Sci. 2015, 6, 4912.
[7] Li, J. H.; Du, D. M. Chin. J. Chem. 2015, 33, 418.
[8] Zhou, H. Y.; Li, N. N.; Yang, J. Y.; Li, T. Y.; Li, Z. Chin. J. Org. Chem. 2016, 36, 502(in Chinese). (周红艳, 李娜娜, 杨靖亚, 李天媛, 李政, 有机化学, 2016, 36, 502.)
[9] Berner, O. M.; Tedeschi, L.; Enders, D. Eur. J. Org. Chem. 2002, 12, 1877.
[10] List, B.; Pojarliev, P.; Martin, H. J. Org. Lett. 2001, 3, 2423.
[11] Zu, L.; Wang, J.; Li, H.; Wang, W. Org. Lett. 2006, 8, 3077.
[12] Mosse, S.; Alexakis, A. Org. Lett. 2006, 8, 3577.
[13] Luo, S.; Mi, X.; Zhang, L.; Liu, S.; Xu, H.; Cheng, J. P. Angew. Chem., Int. Ed. 2006, 45, 3093.
[14] Luo, S.; Mi, X.; Zhang, L.; Cheng, J. P. Chem. Commun. 2006, 3687.
[15] Li, Y.; Liu, X. Y.; Zhao, G. Tetrahedron:Asymmetry 2006, 17, 2034.
[16] Zhu, M. K.; Cun, L. F.; Mi, A. Q.; Jiang, Y. Z.; Gong, L. Z. Tetrahedron:Asymmetry 2006, 17, 491.
[17] Cao, C. L.; Ye, M. C.; Sun, X. L.; Tang, Y. Org. Lett. 2006, 8, 2901.
[18] Palomo, C.; Vera, S.; Mielgo, A.; Gomez-Bengoa, E. Angew. Chem., Int. Ed. 2006, 45, 5984.
[19] Pansare, S. V.; Pandya, K. J. Am. Chem. Soc. 2006, 128, 9624.
[20] Mosse, S.; Laars, M.; Kriis, K.; Kanger, T.; Alexakis, A. Org. Lett. 2006, 8, 2559.
[21] Wang, J.; Li, H.; Lou, B.; Zu, L.; Guo, H.; Wang, W. Chem.-Eur. J. 2006, 12, 4321.
[22] Tsogoeva, S. B.; Wei, S. Chem. Commun. 2006, 24, 1451.
[23] Wang, B.; Xu, T.; Zhu, L.; Lan, Y.; Wang, J. D. Org. Chem. Front. 2017, 4, 1266.
[24] Huang, H.; Jacobsen, E. N. J. Am. Chem. Soc. 2006, 128, 7170.
[25] Yalonde, M. P.; Chen, Y.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2006, 45, 6366.
[26] Xu, Y.; Zou, W.; Sunden, H.; Ibrahem, I.; Cordova, A. Adv. Synth. Catal. 2006, 348, 418.
[27] Jiang, L.; Chen, Y. C. Catal. Sci. Technol. 2011, 1, 354.
[28] Hansen, H. M.; Longbottom, D. A.; Ley, S. V. Chem. Commun. 2006, 4838.
[29] Wascholowski, V.; Hansen, H. M.; Longbottom, D. A.; Ley, S. V.; Synthesis 2008, 1269.
[30] Xie, J. W.; Chen, W.; Li, R.; Zeng, M.; Du, W.; Yue, L.; Chen, Y. C.; Wu, Y.; Zhu, J.; Deng, J. G. Angew. Chem., Int. Ed. 2007, 46, 389.
[31] Li, X. F.; Cun, L. F.; Lian, C. X.; Zhong, L.; Chen, Y. C.; Liao, J.; Zhu, J.; Deng, J. G. Org. Biomol. Chem. 2008, 6, 349.
[32] Li, X. M.; Wang, B.; Zhang, J. M.; Yan, M. Org. Lett. 2011, 13, 374.
[33] Yue, L.; Du, W.; Liu, Y. K.; Chen, Y. C. Tetrahedron Lett. 2008, 49, 3881.
[34] Lu, X.; Deng, L. Angew. Chem. 2008, 120, 7824.
[35] McCooey, S. H.; Connon, S. J. Org. Lett. 2007, 9, 599.
[36] Gonzalez, C.; Schlegel, H. B. J. Chem. Phys. 1989, 90, 2154.
[37] Gonzalez, C.; Schlegel, H. B. J. Phys. Chem. 1990, 94, 5523.
[38] Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899.
[39] Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83, 735.
[40] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Challacombe, M.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez. C.; Pople, J. A. Gaussian 09, revision A.1, Gaussian Inc., Wallingford CT, 2009.
[41] Jones, G. O.; Li, X.; Hayden, A. E.; Houk, K. N.; Danishefsky, S. J. Org. Lett. 2008, 10, 4093.
[42] Peles, D. N.; Thoburn, J. D. J. Org. Chem. 2008, 73, 3135.
[43] Rehbein, J.; Hiersemann, M. J. Org. Chem. 2009, 74, 4336.
[44] Su, Z. S.; Lee, H. W.; Kim, C. K. Eur. J. Org. Chem. 2013, 2013, 1706.
[45] Jiang, H. Y.; Feng, W.; Sun, Y. W.; Liu, H. L.; Huang, X. R. Chem. J. Chin. Univ. 2014, 35, 1500(in Chinese). (姜海洋, 冯伟, 孙艳伟, 刘慧玲, 黄旭日, 高等学校化学学报, 2014, 35, 1500.)
[46] Fukui, K.; Fujimoto, H. Frontier Orbitals and Reaction Paths:Selected Papers of Kenichi Fukui, World Scientific, Singapore, 1997
[47] Hoffmann, R. Rev. Mod. Phys. 1988, 60, 601.
[48] Zhang, L. L.; Zhou, Z. J.; Jiang, H. Y.; Liu, H. L.; Huang, X. R. Tetrahedron:Asymmetry 2013, 24, 1.

Outlines

/