Chinese Journal of Organic Chemistry >
Progress in Helicates Directed by Metal Coordination
Received date: 2017-11-07
Revised date: 2017-11-23
Online published: 2017-12-15
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21472015, 21332008).
Artificial foldamers were constructed by non-covalent interactions to mimic the structures of biomacromolecules, such as proteins and DNA, which is conducive to a better understanding of the chemical processes at the molecular level in nature. The significant advances in foldamers render it become one of the most important topics in supramolecular chemistry. Coordination bond is widely used in the self-assembly process due to its bond strength and diverse geometry. In this article, we summarize a few types of metal-coordination helical folding systems, including single helicate, double helicates, triple helicates, quadruple helicates and cyclic helicates, and their folding behaviors and structural reconfiguration in the coordination process.
Key words: foldamers; helicates; metal ions; coordination; structural reconfiguration
Jiang Hua , Li Qiaolian , Wang Guangxia . Progress in Helicates Directed by Metal Coordination[J]. Chinese Journal of Organic Chemistry, 2018 , 38(5) : 1065 -1084 . DOI: 10.6023/cjoc201711013
[1] Pedersen, C. J. J. Am. Chem. Soc. 1967, 89, 7017.
[2] Pedersen, C. J. Angew. Chem., Int. Ed. Engl. 1988, 27, 1021.
[3] Dietrich, B.; Lehn, J. M.; Sauvage, J. P. Tetrahedron Lett. 1969, 10, 2885.
[4] Lehn, J. M. Angew. Chem., Int. Ed. Engl. 1988, 27, 89.
[5] Helgesen, R. C.; Timko, J. M.; Cram, D. J. J. Am. Chem. Soc. 1973, 95, 3021.
[6] Cram, D. J. Angew. Chem., Int. Ed. Engl. 1988, 27, 1009.
[7] Hecht, S.; Huc, I. Foldamers, Wiley-VCH, Weinheim, 2007, p. 3.
[8] Saraogi, I.; Hamilton, A. D. Chem. Soc. Rev. 2009, 38, 1726.
[9] Juwarker, H.; Jeong, K. S. Chem. Soc. Rev. 2010, 39, 3664.
[10] (a) Zhang, D. W.; Zhao, X.; Hou, J. L.; Li, Z. T. Chem. Rev. 2012, 112, 5271.
(b) Wang, Y.; Wang, H.; Zhang, D.-W.; Li, Z.-T. Chin. J. Org. Chem. 2016, 36, 1580(in Chinese). (王奕, 王辉, 张丹维, 黎占亭, 有机化学, 2016, 36, 1580.)
(c) Sun, G.; Nie, C.; Zhao, X.; Li. Z. Chin. J. Org. Chem. 2017, 37, 1757(in Chinese). (孙广军, 聂承斌, 赵新, 黎占亭, 有机化学, 2017, 37, 1757.)
[11] Ma, X.; Tian, H. Chem. Soc. Rev. 2010, 39, 70.
[12] Hännia, K. D.; Leigh, D. A. Chem. Soc. Rev. 2010, 39, 1240.
[13] (a) Qu, D. H.; Tian, H. Chem. Sci. 2011, 2, 1011.
(b) Wang, Q.; Cheng, M.; Cao, Y.; Jiang, J.; Wang, L. Acta Chim. Sinica 2016, 74, 9(in Chinese). (王其, 程明, 曹逸涵, 强琚莉, 王乐勇, 化学学报, 2016, 74, 9.)
[14] Beves, J. E.; Blight, B. A.; Campbell, C. J.; Leigh, D. A.; McBurney, R. T. Angew. Chem., Int. Ed. 2011, 50, 9260.
[15] Ayme, J.; Beves, J. E.; Campbella, C. J.; Leigh, D. A. Chem. Soc. Rev. 2013, 42, 1700.
[16] Kim, J. S.; Quang, D. T. Chem. Rev. 2007, 107, 3780.
[17] (a) Sun, Y.; Mei, Y. X.; Quan, J. X.; Xiao, X.; Zhang, L.; Tian, D. M.; Li, H. B. Chem. Commun. 2016, 14416.
(b) Wang, Y.; Liu, Y. Acta Chim. Sinica 2015, 73, 984(in Chinese). (王以轩, 刘育, 化学学报, 2015, 73, 984.)
[18] Kay, E. R.; Leigh, D. A.; Zerbetto, F. Angew. Chem., Int. Ed. 2007, 46, 72.
[19] Erbas-Cakmak, S.; Leigh, D. A.; McTernan, C. T.; Nussbaumer, A. L. Chem. Rev. 2015, 115, 10081.
[20] Appella, D. H.; Christianson, L. A.; Karle, I. L.; Powell, D. R.; Gellman, S. H. J. Am. Chem. Soc. 1996, 118, 13071.
[21] Hill, J. D.; Mio, M. J.; Prince, R. B.; Hughes, T. S.; Moore, J. S. Chem. Rev. 2001, 101, 3893.
[22] Stephens, O. M.; Kim, S.; Welch, B. D.; Hodsdon, M. E.; Kay, M. S.; Schepartz, A. J. Am. Chem. Soc. 2005, 127, 13126.
[23] Heemstra, J. M.; Moore, J. S. J. Am. Chem. Soc. 2004, 126, 1648.
[24] Lehn, J. M.; Rigault, A.; Siegel, J.; Harrowfield, J.; Chevrier, B.; Moras, D. Proc. Natl. Acad. Sci. U. S. A. 1987, 84, 2565.
[25] Piguet, C.; Bernardinelli, G.; Hopfgartner, G. Chem. Rev. 1997, 97, 2005.
[26] Albrecht, M. Chem. Rev. 2001, 101, 3457.
[27] Hannon, M. J.; Childs, L. J. Supramol. Chem. 2004, 16, 7.
[28] Boiocchia, M.; Fabbrizzi, L. Chem. Soc. Rev. 2014, 43, 1835.
[29] Horeau, M.; Lautrette, G.; Wicher, B.; Blot, V.; Lebreton, J.; Pipelier, M.; Dubreuil, D.; Ferrand, Y.; Huc, I. Angew Chem., Int. Ed. 2017, 56, 6823.
[30] Prince, R. B.; Okada, T.; Moore, J. S. Angew. Chem., Int. Ed. 1999, 38, 233.
[31] Kim, H. J.; Lee, E.; Park, H.; Lee, M. J. Am. Chem. Soc. 2007, 129, 10994.
[32] Stadler, A. M.; Kyritsakas, N.; Lehn, J. M. Chem. Commun. 2004, 2024.
[33] Kwong, H. L.; Yeung, H. L.; Lee, W. S.; Wong, W. T. Chem. Commun. 2006, 4841.
[34] Eerdun, C.; Hisanaga, S.; Setsune, J. Angew. Chem., Int. Ed. 2013, 52, 929.
[35] Zhang, F.; Bai, S.; Yap, G. P. A.; Tarwade, V.; Fox, J. M. J. Am. Chem. Soc. 2005, 127, 10590.
[36] Lehn, J. M.; Rigault, A. Angew. Chem., Int. Ed, 1988, 27, 1095.
[37] Hasenknopf, B.; Lehn, J. M.; Baum, G.; Fenske, D. Proc. Natl. Acad. Sci. U. S. A. 1996, 93, 1397.
[38] Smith, V. C. M.; Lehn, J. M. Chem. Commun. 1996, 2733.
[39] Orita, A.; Nakano, T.; An, D. L.; Tanikawa, K.; Wakamatsu, K.; Otera, J. J. Am. Chem. Soc. 2004, 126, 10389.
[40] Zong, R.; Thummel, R. P. Inorg. Chem. 2005, 44, 5984.
[41] Nitschke, J. R.; Schultz, D.; Bernardinelli, G.; Gérard, D. J. Am. Chem. Soc. 2004, 126, 16538.
[42] Schultz, D.; Nitschke, J. R. J. Am. Chem. Soc. 2006, 128, 9887.
[43] Hutin, M.; Cramer, C. J.; Gagliardi, L.; Shahi, A. R. M.; Bernardinelli, G.; Cerny, R.; Nitschke, J. R. J. Am. Chem. Soc. 2007, 129, 8774.
[44] Campbell, V. E.; Hatten, X.; Delsuc, N.; Kauffmann, B.; Huc, I.; Nitschke, J. R. Nat. Chem. 2010, 2, 684.
[45] Hatten, X.; Asil, D.; Friend, R. H.; Nitschke, J. R. J. Am. Chem. Soc. 2012, 134, 19170.
[46] Kaminker, R.; Hatten, X.; Lahav, M.; Lupo, F.; Gulino, A.; Evmenenko, G.; Dutta, P.; Browne, C.; Nitschke, J. R.; Boom, M. E. J. Am. Chem. Soc. 2013, 135, 17052.
[47] Greenfield, J. L.; Rizzuto, F. J.; Goldberga, I.; Nitschke, J. R. Angew. Chem., Int. Ed. 2017, 56, 7541.
[48] Lützen, A.; Hapke, M.; Griep-Raming, J.; Haase, D.; Saak, W. Angew. Chem. Int. Ed. 2002, 41, 2086.
[49] Bunzen, J.; Bruhn, T.; Bringmann, G.; Lützen, A. J. Am. Chem. Soc. 2009, 131, 3621.
[50] Bunzen, J.; Hovorka, R.; Lützen, A. J. Org. Chem. 2009, 74, 5228.
[51] Riis-Johannessen, T.; Harding, L. P.; Jeffery, J. C.; Moon, R.; Rice, C. R. Dalton Trans. 2007, 16, 1577.
[52] Zhao, D. P.; Leeuwen, T.; Cheng, J. L.; Feringa, B. L. Nat. Chem. 2017, 9, 250.
[53] Wood, T. E.; Dalgleish, N. D.; Power, E. D.; Thompson, A.; Chen, X. M.; Okamoto, Y. J. Am. Chem. Soc. 2005, 127, 5740.
[54] Katagiri, H.; Miyagawa, T.; Furusho, Y.; Yashima, E. Angew. Chem., Int. Ed. 2006, 45, 1741.
[55] Miwa, K.; Furusho, Y.; Yashima, E. Nat. Chem. 2010, 2, 444.
[56] Miwa, K.; Shimizu, K.; Min, H.; Furusho, Y.; Yashima, E. Tetrahedron 2012, 68, 4470.
[57] Furusho, Y.; Miwa, K.; Asai, R.; Yashima, E. Chem. Eur. J. 2011, 17, 13954.
[58] Suzuki, Y.; Nakamura, T.; Iida, H.; Ousaka, N.; Yashima, E. J. Am. Chem. Soc. 2016, 138, 4852.
[59] Yamamoto, S.; Iida, H.; Yashima, E. Angew. Chem., Int. Ed. 2013, 52, 6849.
[60] Dömer, J.; Slootweg, J. C.; Hupka, F.; Lammertsma, K.; Hahn, F. E. Angew. Chem., Int. Ed. 2010, 49, 6430.
[61] Cui, F.; Li, S.; Jia, C.; Mathieson, J. S.; Cronin, L.; Yang, X.; Wu, B. Inorg. Chem. 2012, 51, 179.
[62] Li, Q. L.; Huang, F.; Fan, Y. X.; Wang, Y. L.; Li, J. F.; He, Y. J.; Jiang, H. Eur. J. Inorg. Chem. 2014, 3235.
[63] Hannon, M. J.; Moreno, V.; Prieto, M. J.; Moldrheim, E.; Sletten, E.; Meistermann, I.; Isaac, C. J.; Sanders, K. J.; Rodger, A. Angew. Chem., Int. Ed. 2001, 40, 879.
[64] Meistermann, I.; Moreno, V.; Prieto, M. J.; Moldrheim, E.; Sletten, E.; Khalid, S.; Rodger, P. M.; Peberdy, J. C.; Isaac, C. J.; Rodger, A.; Hannon, M. J. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 5069.
[65] Oleksi, A.; Blanco, A. G.; Boer, R.; Usón, I.; Aymamí, J.; Rodger, A.; Hannon, M. J.; Coll, M. Angew. Chem., Int. Ed. 2006, 45, 1227.
[66] Malina, J.; Hannon, M. J.; Brabec, V. Chem. Eur. J. 2015, 21, 11189.
[67] Pascu, G. I.; Hotze, A. C. G.; Sanchez-Cano, C.; Kariuki, B. M.; Hannon, M. J. Angew. Chem., Int. Ed. 2007, 46, 4374.
[68] Phongtongpasuk, S.; Paulus, S.; Schnabl, J.; Sigel, R. K. O.; Spingler, B.; Hannon, M. J.; Freisinger, E. Angew. Chem., Int. Ed. 2013, 52, 11513.
[69] Kundu, N.; Maity, M.; Chatterjee, P. B.; Teat, S. J.; Endo, A.; Chaudhury, M. J. Am. Chem. Soc. 2011, 133, 20104.
[70] Zhang, Z.; Dolphin, D. Chem. Commun. 2009, 6931.
[71] Zhang, Z.; Dolphin, D. Inorg. Chem. 2010, 49, 11550.
[72] Bocquet, B.; Bernardinelli, G.; Ouali, N.; Floquet, S.; Renaud, F.; Hopfgartnerc, G.; Piguet, C. Chem. Commun. 2002, 930.
[73] Zeckert, K.; Hamacek, J.; Rivera, J.; Floquet, S.; Pinto, A.; Borkovec, M.; Piguet, C. J. Am. Chem. Soc. 2004, 126, 11589.
[74] Zeckert, K.; Hamacek, J.; Senegas, J.; Dalla-Favera, N.; Floquet, S.; Bernardinelli, G.; Piguet, C. Angew. Chem., Int. Ed. 2005, 44, 7954.
[75] Riis-Johannessen, T.; Bernardinelli, G.; Filinchuk, Y.; Clifford, S.; Favera, N. D.; Piguet, C. Inorg. Chem. 2009, 48, 5512.
[76] Terazzi, E.; Guénée, L.; Varin, J.; Bocquet, B.; Lemonnier, J. F.; Emery, D.; Mareda, J.; Piguet, C. Chem. Eur. J. 2011, 17, 184.
[77] Zare, D.; Suffren, Y.; Guénée, L.; Eliseeva, S. V.; Nozary, H.; Aboshyan-Sorgho, L.; Petoud, S.; Hauser, A.; Piguet, C. Dalton Trans. 2015, 44, 2529.
[78] Zhu, X.; He, C.; Dong, D.; Liu, Y.; Duan, C. Y. Dalton Trans. 2010, 39, 10051.
[79] Hahn, F. E.; Isfort, C. S.; Pape, T. Angew. Chem., Int. Ed. 2004, 43, 4807.
[80] Kreickmann, T.; Diedrich, C.; Pape, T.; Huynh, H. V.; Grimme, S.; Hahn, F. E. J. Am. Chem. Soc. 2006, 128, 11808.
[81] McMorran, D. A.; Steel, P. J. Angew. Chem., Int. Ed. 1998, 37, 3295.
[82] Tripathy, D.; Pal, A. K.; Hanan, G. S.; Chand, D. K. Dalton Trans. 2012, 41, 11273.
[83] Scott, S. Ø.; Gavey, E. L.; Lind, S. J.; Gordona, K. C.; Crowley, J. D. Dalton Trans. 2011, 40, 12117.
[84] McNeill, S. M.; Preston, D.; Lewis, J. E. M.; Robert, A.; Knerr-Rupp, K.; Graham, D. O.; Wright, J. R.; Giles, G. I.; Crowley, J. D. Dalton Trans. 2015, 44, 11129.
[85] Xu, J. D.; Raymond, K. N. Angew. Chem., Int. Ed. 2006, 45, 6480.
[86] Hasenknopf, B.; Lehn, J. M.; Kneisel, B. O.; Baum, G.; Fenske, D. Angew. Chem., Int. Ed. 1996, 35, 1838.
[87] Hasenknopf, B.; Lehn, J. M.; Boumediene, N.; Dupont-Gervais, A.; Dorsselaer, A. V.; Kneisel, B.; Fenske, D. J. Am. Chem. Soc. 1997, 119, 10956.
[88] Leigh, D. A.; Pritchard, R. G.; Stephens, A. J. Nat. Chem. 2014, 6, 978.
[89] Marcos, V.; Stephens, A. J.; Jaramillo-Garcia, J.; Nussbaumer, A. L.; Woltering, S. L.; Valero, A.; Lemonnier, J. F.; Vitorica-Yrezabal, I. J.; Leigh, D. A. Science 2016, 352, 1555.
[90] Danon, J. J.; Krüger, A.; Leigh, D. A.; Lemonnier, J. F.; Stephens, A. J.; Vitorica-Yrezabal, I. J.; Woltering, S. L. Science 2017, 355, 159.
[91] Ayme, J. F.; Beves, J. E.; Leigh, D. A.; McBurney, R. T.; Rissanen, K.; Schultz, D. Nat. Chem. 2011, 4, 15.
[92] Ayme, J. F.; Beves, J. E.; Leigh, D. A.; McBurney, R. T.; Rissanen, K.; Schultz, D. J. Am. Chem. Soc. 2012, 134, 9488.
[93] Beves, J. E.; Campbell, C. J.; Leigh, D. A.; Pritchard, R. G. Angew. Chem., Int. Ed. 2013, 52, 6464.
[94] Ayme, J. F.; Beves, J. E.; Campbell, C. J.; Leigh, D. A. Angew. Chem., Int. Ed. 2014, 53, 7823.
[95] Ayme, J. F.; Beves, J. E.; Campbell, C. J.; Gil-Ramírez, G.; Leigh, D. A.; Stephens, A. J. J. Am. Chem. Soc. 2015, 137, 9812.
[96] Allen, K. E.; Faulkner, R. A.; Harding, L. P.; Rice, C. R.; Johannessen, T.; Voss, M. L.; Whitehead, M. Angew. Chem., Int. Ed. 2010, 49, 6655.
[97] Metherell, A. J.; Ward, M. D. RSC Adv. 2013, 3, 14281.
[98] Wu, Z. S.; Hsu, J. T.; Hsieh, C. C.; Horng, Y. C. Chem. Commun. 2012, 3436.
[99] Constable, E. C.; Hostettler, N.; Housecroft, C. E.; Murray, N. S.; Schönle, J.; Soydaner, U.; Walliser, R. M.; Zampese, J. A. Dalton Trans. 2013, 42, 4970.
[100] Jiménez, A.; Bilbeisi, R. A.; Ronson, T. K.; Zarra, S.; Woodhead, C.; Nitschke, J. R. Angew. Chem., Int. Ed. 2014, 53, 4556.
[101] Wood, C. S.; Ronson, T. K.; Belenguer, A. M.; Holstein, J. J.; Nitschke, J. R. Nat. Chem. 2015, 7, 354.
[102] Søensen, A.; Castilla, A. M.; Ronson, T. K.; Pittelkow, M.; Nitschke, J. R. Angew. Chem., Int. Ed. 2013, 52, 11273.
[103] Meng, W. J.; Ronson, T. K.; Clegg, J. K.; Nitschke, J. R. Angew. Chem., Int. Ed. 2013, 52, 1017.
[104] Scherer, M.; Caulder, D. L.; Johnson, D. W.; Raymond, K. N. Angew. Chem., Int. Ed. 1999, 38, 1588.
[105] Wang, B.; Zang, Z. P.; Wang, H. H.; Dou, W.; Tang, X. L.; Liu, W. S.; Shao, Y. L.; Ma, J. X.; Li, Y. Z.; Zhou, J. Angew. Chem., Int. Ed. 2013, 52, 3756.
[106] Malviya, A.; Jena, H. S.; Mondal, A. K.; Konar S. Eur. J. Inorg. Chem. 2015, 2901.
[107] Diebold, C.; Mobian, P.; Huguenard, C.; Allouche, L.; Henry, M. Inorg. Chem. 2010, 49, 6369.
[108] Weekes, D. M.; Diebold, C.; Mobian, P.; Huguenard, C.; Allouche, L.; Henry, M. Chem. Eur. J. 2014, 20, 5092.
[109] Stadler, A. M.; Burg, C.; Ramírez, J.; Lehn, J. M. Chem. Commun. 2013, 5733.
[110] Miao, C. R.; Khalil, G.; Chaumont, A.; Mobian, P.; Henry, M. Dalton Trans. 2016, 45, 7998.
[111] Stadler, A. M.; Ramírez, J.; Lehn, J. M.; Vincent, B. Chem. Sci. 2016, 7, 3689.
/
〈 |
|
〉 |