Chinese Journal of Organic Chemistry >
Catalytic Asymmetric Dehydrative Arylation of 3-Indolylmethanols with Tryptophols: Enantioselective Synthesis of Bisindolyl-Substituted Triarylmethanes
Received date: 2017-11-27
Revised date: 2017-12-25
Online published: 2018-01-03
Supported by
Project supported by the National Natural Science Foundation of China (No. 21702077), the Natural Science Foundation of Jiangsu Province (No. BK20170227), the Applied Fundamental Research Project of Xuzhou City (No. KH17021).
The chiral triarylmethane frameworks are featured in many biologically important molecules. As a result, the synthesis of chiral triarylmethanes has received tremendous attention from the chemists. Herein, we reported the chiral phosphoric acid catalyzed dehydrative arylation of 3-indolylmethanols with tryptophols, leading to the efficient synthesis of a series of structurally diversified chiral bisindolyl-substituted triarylmethanes in moderate to good yields (up to 80% yield) with acceptable enantioselectivities (up to 88% ee). The chiral phosphoric acid played an important role not only in the dehydration of 3-indolylmethanols, but also in the control of enantioselectivity via hydrogen-bonding and ion-pairing interactions. The only byproduct was water, indicating that this catalytic asymmetric dehydrative arylation reaction was environment-friendly and in accordance with the requirements of green chemistry. In addition, the mild reaction condition and wide substrate scope of the reaction have successfully demonstrated the great potential of organocatalysis in the chiral triarylmethanes.
Key words: triarylmethanes; organocatalysis; 3-indolylmethanols; tryptophols; green chemistry
Wu Ping , Wu Jiale , Wang Jingyi , Mei Guangjian . Catalytic Asymmetric Dehydrative Arylation of 3-Indolylmethanols with Tryptophols: Enantioselective Synthesis of Bisindolyl-Substituted Triarylmethanes[J]. Chinese Journal of Organic Chemistry, 2018 , 38(5) : 1251 -1260 . DOI: 10.6023/cjoc201711045
[1] (a) Nair, V.; Thomas, S.; Mathew, S. C.; Abhilash, K. G. Tetrahedron 2006, 62, 6731.
(b) Li, Z.; Wang, J.; Zhao, J.; Zhao, C.; Liu, X.; Yu, X. Chin. J. Org. Chem. 2014, 34, 485(in Chinese). (李中贤, 王俊伟, 赵俊宏, 赵灿方, 刘小培, 余学军, 有机化学, 2014, 34, 485.)
(c) Mondal, S.; Panda, G. RSC Adv. 2014, 4, 28317.
(d) Nambo, M.; Crudden, C. M. ACS Catal. 2015, 5, 4734.
[2] (a) Mason, C. D.; Nord, F. F. J. Org. Chem. 1951, 16, 722.
(b) Ghaisas, V. V.; Kane, B. J.; Nord, F. F. J. Org. Chem. 1958, 23, 560.
(c) Irie, M. J. Am. Chem. Soc. 1983, 105, 2078.
(d) Muthyala, R.; Katritzky, A. R.; Lan, X. F. Dyes Pigm. 1994, 25, 303.
[3] (a) de Jong, P. C.; van de Ven, J.; Nortier, H. W. R.; Maitimu-Smeele, I.; Donker, T. H.; Thijssen, J. H. H.; Slee, P. H. T. J.; Blankenstein, R. A. Cancer Res. 1997, 57, 2109.
(b) Goss, P. E.; Strasser, K. J. Clin. Oncol. 2001, 19, 881.
[4] Parai, M. K.; Panda, G.; Chaturvedi, V.; Manju, Y. K.; Sinha, S. Bioorg. Med. Chem. Lett. 2008, 18, 289.
[5] Ellsworth, B. A.; Ewing, W. R.; Jurica, E. US 2011/0082165, 2011.
[6] (a) Cho, S. D.; Yoon, K.; Chintharlapalli, S.; Abdelrahim, M.; Lei, P.; Hamilton, S.; Khan, S.; Ramaiah, S. K.; Safe, S. Cancer Res. 2007, 67, 674.
(b) Paira, P.; Hazra, A.; Kumar, S.; Paira, R.; Sahu, K. B.; Naskar, S.; Saha, P.; Mondal, S.; Maity, A.; Banerjee, S.; Mondal, N. B. Bioorg. Med. Chem. Lett. 2009, 19, 4786.
(c) Kamal, A.; Srikanth, Y. V. V.; Khan, M. N. A.; Shaik, T. B.; Ashraf, M. Bioorg. Med. Chem. Lett. 2010, 20, 5229.
(d) Subba Reddy, B. V.; Rajeswari, N.; Sarangapani, M.; Prashanthi, Y.; Ganji, R. J.; Addlagatta, A. Bioorg. Med. Chem. Lett. 2012, 22, 2460.
(e) Shiri, M.; Zolfigol, M. A.; Kruger, H. G.; Tanbakouchian, Z. Chem. Rev. 2010, 110, 2250.
[7] (a) Esquivias, J.; Gómez Arrayás, R.; Carretero, J. C. Angew. Chem., Int. Ed. 2006, 45, 629.
(b) Zhang, J.; Bellomo, A.; Creamer, A. D.; Dreher, S. D.; Walsh, P. J. J. Am. Chem. Soc. 2012, 134, 13765.
(c) Zhou, Q.; Srinivas, H. D.; Dasgupta, S.; Watson, M. P. J. Am. Chem. Soc. 2013, 135, 3307.
(d) Ji, X.; Huang, T.; Wu, W.; Liang, F.; Cao, S. Org. Lett. 2015, 17, 5096.
(e) Xia, Y.; Chen, L.; Qu, P.; Ji, G.; Feng, S.; Xiao, Q.; Zhang, Y.; Wang, J. J. Org. Chem. 2016, 81, 10484.
(f) Liao, J.-Y.; Ni, Q.; Zhao, Y. Org. Lett. 2017, 19, 4074.
(g) Zhou, T.; Li, S.; Huang, B.; Li, C.; Zhao, Y.; Chen, J.; Chen, A.; Xiao, Y.; Liu, L.; Zhang, J. Org. Biomol. Chem. 2017, 15, 4941.
(h) Xia, Y.; Hu, F.; Xia, Y.; Liu, Z.; Ye, F.; Zhang, Y.; Wang, J. Synthesis 2017, 49, 1073.
(i) Wang, Y.; Zhang, C.; Wang, H.; Jiang, Y.; Du, X.; Xu, D. Adv. Synth. Catal. 2017, 359, 791.
[8] (a) Sun, F.-L.; Zheng, X.-J.; Gu, Q.; He, Q.-L.; You, S.-L. Eur. J. Org. Chem. 2010, 47.
(b) Taylor, B. L. H.; Harris, M. R.; Jarvo, E. R. Angew. Chem., Int. Ed. 2012, 51, 7790.
(c) Matthew, S. C.; Glasspoole, B. W.; Eisenberger, P.; Crudden, C. M. J. Am. Chem. Soc. 2014, 136, 5828.
(e) Zhuo, M.-H.; Jiang, Y.-J.; Fan, Y.-S.; Gao, Y.; Liu, S.; Zhang, S. Org. Lett. 2014, 16, 1096.
(f) Lou, Y.; Cao, P.; Jia, T.; Zhang, Y.; Wang, M.; Liao, J. Angew. Chem., Int. Ed. 2015, 54, 12134.
[9] (a) Bandini, M.; Tragni, M. Org. Biomol. Chem. 2009, 7, 1501.
(b) Emer, E.; Sinisi, R.; Capdevila, M. G.; Petruzziello, D.; De Vincentiis, F.; Cozzi, P. G. Eur. J. Org. Chem. 2011, 647.
(c) Sundararaju, B.; Achard, M.; Bruneau, C. Chem. Soc. Rev. 2012, 41, 4467.
(d) Kumar, R.; Van der Eycken, E. V. Chem. Soc. Rev. 2013, 42, 1121.
(e) Naredla, R. R.; Klumpp, D. A. Chem. Rev. 2013, 113, 6905.
(f) Chen, L.; Yin, X.-P.; Wang, C.-H.; Zhou, J. Org. Biomol. Chem. 2014, 12, 6033.
(g) Dryzhakov, M.; Richmond, E.; Moran, J. Synthesis 2016, 48, 935.
(h) Huang, J.-Z.; Luo, S.-W.; Gong, L.-Z. Acta Chim. Sinica 2013, 71, 879(in Chinese). (黄建洲, 罗时玮, 龚流柱, 化学学报, 2013, 71, 879.)
(i) Song, J.; Guo, C.; Adele, A.; Yin, H.; Gong, L.-Z. Chem. Eur. J. 2013, 19, 3319.
(j) Tao, Z.-L.; Zhang, W.-Q.; Chen, D.-F.; Adele, A.; Gong, L.-Z. J. Am. Chem. Soc. 2013, 135, 9255.
(k) Wang, P.-S.; Zhou, X.-L.; Gong, L.-Z. Org. Lett. 2014, 16, 976.
(l) Su, Y.-L.; Han, Z.-Y.; Li, Y.-H.; Gong, L.-Z. ACS Catal. 2017, 7, 7917.
(m) Song, J.; Chen, D.-F.; Gong, L.-Z. Natl. Sci. Rev. 2017, 4, 381.
[10] Constable, D. J. C.; Dunn, P. J.; Hayler, J. D.; Humphrey, G. R.; Leazer, J. L. J.; Linderman, R. J.; Lorenz, K.; Manley, J.; Pearlman, B. A.; Wells, A.; Zaks, A.; Zhang, T. Y. Green Chem. 2007, 9, 411.
[11] (a) Zheng, C.; You, S.-L. Chem. Soc. Rev. 2012, 41, 2498.
(b) Yu, J.; Shi, F.; Gong, L.-Z. Acc. Chem. Res. 2011, 44, 1156.
(c) Parmar, D.; Sugiono, E.; Raja, S.; Rueping, M. Chem. Rev. 2014, 114, 9047.
[12] (a) Mei, G.-J.; Shi, F. J. Org. Chem. 2017, 82, 7695.
(b) Zhu, S.; Xu, B.; Wang, L.; Xiao, J. Chin. J. Org. Chem. 2016, 36, 1229(in Chinese). (朱帅, 徐鲁斌, 王亮, 肖建, 有机化学, 2016, 36, 1229.)
(c) Wang, L.; Chen, Y.-Y.; Xiao, J. Asian J. Org. Chem. 2014, 3, 1036.
[13] (a) Zhou, L. J.; Zhang, Y. C.; Zhao, J. J.; Shi, F.; Tu, S. J. J. Org. Chem. 2014, 79, 10390.
(b) Wang, X. X.; Liu, J.; Xu, L. B.; Hao, Z. H.; Wang, L.; Xiao, J. RSC Adv. 2015, 5, 101713.
(c) Xiao, J.; Wen, H.; Wang, L.; Xu, L.; Hao, Z.; Shao, C.-L.; Wang, C.-Y. Green Chem. 2016, 18, 1032.
[14] (a) Sun, F.-L.; Zeng, M.; Gu, Q.; You, S.-L. Chem.-Eur. J. 2009, 15, 8709.
(b) Wang, S.-G.; Han, L.; Zeng, M.; Sun, F.-L.; Zhang, W.; You, S.-L. Org. Biomol. Chem. 2012, 10, 3202.
[15] Sun, X.-X.; Du, B.-X.; Zhang, H.-H.; Ji, L.; Shi, F. ChemCatChem 2015, 7, 1211.
[16] (a) Trost, B. M.; Quancard, J. J. Am. Chem. Soc. 2006, 128, 6314.
(b) Stephens, D. E.; Larionov, O. V. Eur. J. Org. Chem. 2014, 3662.
(c) Ruchti, J.; Carreira, E. M. J. Am. Chem. Soc. 2014, 136, 16756.
(d) Zhu, Y.; Rawal, V. H. J. Am. Chem. Soc. 2012, 134, 111.
/
〈 |
|
〉 |