Articles

Switchable Synthesis of Iodoalkynes and Diiodoalkenes from Terminal Alkynes

  • Chen Suo ,
  • Zhang Xiaowei ,
  • Zhao Hui ,
  • Guo Xiaohong ,
  • Hu Xiangguo
Expand
  • a National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022;
    b Anhui Engineering Technology Research Center for Extraction and Isolation of Active Components, Anhui Academy of Applied Technology, Hefei 230031

Received date: 2017-11-30

  Revised date: 2018-01-08

  Online published: 2018-01-26

Supported by

Project supported by the National Natural Science Foundation of China (No. 21502076), the Hundred-Talent Program of Hefei City and the Outstanding Young Talents Scheme of Jiangxi Province (No. 20171BCB23039).

Abstract

Iodoalkynes and diiodoalkenes are valuable intermediates used extensively for C—C, C—O and C—N bonds formation. Therefore, the development of new method for the synthesis of these compunds is desirable. In this work, a novel and switchable protocol for the synthesis of iodoalkynes and diiodoalkenes has been developed, which were formed from terminal alkynes using the same reagent system of ZnI2 and tert-butyl nitrite in the presence or absence of triethylamine, respectively. The iodoalkyne formation is operationally simple, mild (weak base and room temperature), and tolerant of a large range of functional groups. In contrast, the diiodoalkene transformation shows interesting dependence on the electron property, and only electron-rich and neutral compounds are viable substrates. The control experiments performed suggest that iodoalkynes and diiodoalkenes are not interchangeable under a series of reaction conditions, including the optimized conditions, which can be explained by the mechanism in which both of the reactions involve a iodonium intermediate formed directly from a terminal alkyne.

Cite this article

Chen Suo , Zhang Xiaowei , Zhao Hui , Guo Xiaohong , Hu Xiangguo . Switchable Synthesis of Iodoalkynes and Diiodoalkenes from Terminal Alkynes[J]. Chinese Journal of Organic Chemistry, 2018 , 38(5) : 1172 -1176 . DOI: 10.6023/cjoc201711050

References

[1] Wu, W. Q.; Jiang, H. F. Acc. Chem. Res. 2014, 47, 2483.
[2] Jeffery, T. J. Chem. Soc., Chem. Commun. 1988, 909.
[3] Casarini, A.; Dembech, P.; Reginato, G.; Ricci, A.; Seconi, G. Tetrahedron Lett. 1991, 32, 2169.
[4] Rao, M. L. N.; Periasamy, M. Synth. Commun. 1995, 25, 2295.
[5] Monenschein, H.; Sourkouni-Argirusi, G.; Schubothe, K. M.; O'Hare, T.; Kirschning, A. Org. Lett. 1999, 1, 2101.
[6] Nishiguchi, I.; Kanbe, O.; Itoh, K.; Maekawa, H. Synlett 2000, 89.
[7] Abele, E.; Fleisher, M.; Rubina, K.; Abele, R.; Lukevics, E. J. Mol. Catal. A:Chem. 2001165, 121.
[8] Lahrache, H.; Robin, S.; Rousseau, G. Tetrahedron Lett. 2005, 46, 1635.
[9] Stefani, H. A.; Cella, R.; Dörr, F. A.; Pereira, C. M. P.; Gomes, F. P.; Zeni, G. Tetrahedron Lett. 2005, 46, 2001.
[10] Yan, J.; Li, J. H.; Cheng, D. P. Synlett 2007, 2442.
[11] Meng, L. G.; Cai, P. J.; Guo, Q. X.; Xue, S. Synth. Commun. 2008, 38, 225.
[12] Chen, S. N.; Lin, T. C.; Hung, T. T.; Tsai, F. Y. J. Chin. Chem. Soc. 2009, 56, 1078.
[13] Reddy, K. R.; Venkateshwar, M.; Maheswari, C. U.; Kumar, P. S. Tetrahedron Lett. 2010, 51, 2170.
[14] Nosel, P.; Lauterbach, T.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Chem. Eur. J. 2013, 19, 8634.
[15] Nouzarian, M.; Hosseinzadeh, R.; Golchoubian, H. Synth. Commun. 2013, 43, 2913.
[16] Li, M. R.; Li, Y. J.; Zhao, B. Z.; Liang, F. S.; Jin, L. Y. RSC Adv. 2014, 4, 30046.
[17] Chowdhury, R. M.; Wilden, J. D. Org. Biomol. Chem. 2015, 13, 5859.
[18] Gómez-Herrera, A.; Nahra, F.; Brill, M.; Nolan, S. P.; Cazin, C. S. J. ChemCatChem 2016, 8, 3381.
[19] Karpov, G. V.; Popik, V. V. J. Am. Chem. Soc. 2007, 129, 3792.
[20] Barsoum, D. N.; Okashah, N.; Zhang, X. G.; Zhu, L. J. Org. Chem. 2015, 80, 9542.
[21] Chen, W. W.; Zhang, J. L.; Wang, B.; Zhao, Z. X.; Wang, X. Y.; Hu, Y. F. J. Org. Chem. 2015, 80, 2413.
[22] Hein, J. E.; Tripp, J. C.; Krasnova, L. B.; Sharpless, K. B.; Fokin, V. V. Angew. Chem., Int. Ed. 2009, 48, 8018.
[23] Wilkins, L. C.; Lawson, J. R.; Wieneke, P.; Rominger, F.; Hashmi, A. S. K.; Hansmann, M. M.; Melen, R. L. Chem. Eur. J. 2016, 22, 14618.
[24] He, G. W.; Liu, F. W.; Xu, X. H. Chin. J. Org. Chem. 2007, 27, 663(in Chinese). (贺干武, 刘凤伟, 许新华, 有机化学, 2007, 27, 663.)
[25] Larson, S.; Luidhardt, T.; Kabalka, G. W.; Pagni, R. M. Tetrahedron Lett. 1988, 29, 35.
[26] Hondrogiannis, G.; Lee, L. C.; Kabalka, G. W.; Pagni, R. M. Tetrahedron Lett. 1989, 30, 2069.
[27] Barluenga, J.; Rodriguez, M. A.; Campos, P. J. J. Org. Chem. 1990, 55, 3104.
[28] Henaff, N.; Stewart, S. K.; Whiting, A. Tetrahedron Lett. 1997, 38, 4525.
[29] Duan, J. X.; Dolbier, W. R.; Jr.; Chen, Q. Y. J. Org. Chem. 1998, 63, 9486.
[30] Hénaff, N.; Whiting, A. J. Chem. Soc., Perkin Trans. 12000, 395.
[31] Li, J. H.; Xie, Y. X.; Yin, D. L. Green Chem. 2002, 4, 505.
[32] Li, J. H.; Xie, Y. X.; Yin, D. L.; Jiang, H. F. Chin. J. Chem. 2003, 21, 714.
[33] Jereb, M.; Zupan, M.; Stavber, S. Chem. Commun. 2004, 2614.
[34] Pavlinac, J.; Zupan, M.; Stavber, S. Org. Biomol. Chem. 2007, 5, 699.
[35] Terent'ev, A. O.; Borisov, D. A.; Krylov, I. B.; Nikishin, G. I. Synth. Commun. 2007, 37, 3151.
[36] Tveryakova, E. N.; Miroshnichenko, Y. Y.; Perederina, I. A.; Yusubov, M. S. Russ. J. Org. Chem. 2007, 43, 152.
[37] Stavber, G.; Iskra, J.; Zupan, M.; Stavber, S. Adv. Synth. Catal. 2008, 350, 2921.
[38] Guo, C. C.; Jiang, Q.; Wang, J. Y. Synthesis 2015, 47, 2081.
[39] Lin, Y. M.; Lu, G. P.; Cai, C.; Yi, W. B. Org. Lett. 2015, 17, 3310.
[40] Tang, S.; Liu, K.; Long, Y.; Qi, X. T.; Lan, Y.; Lei, A. W. Chem. Commun. 2015, 51, 8769.
[41] Wu, Y. M.; Zhang, J. M.; Guo, Y. W.; Wang, X. J.; Zhu, Z. T. Synlett 2016, 27, 2259.
[42] Li, J.H.; Xie, J. X; Yin, D. L. Chin. J. Org. Chem. 2002, 22, 894(in Chinese). (李金恒, 谢叶香, 尹笃林, 有机化学, 2002, 22, 894.)
[43] Yu, K.; Zhang, X.; Hu, Q.; Liu, L. Chin. J. Org. Chem. 2010, 30, 266(in Chinese). (余开辉, 张小丽, 胡乔生, 刘良先, 有机化学, 2010, 30, 266.)
[44] For selected example of synthesis of diiodoalkynes from intermal alkynes, see:(a) Su, L.; Lei, C.-Y.; Fan, W.-Y.; Liu, L.-X. Synth. Commun. 2011, 41, 1200.
(b) Liu, Y.; Huang, D.; Huang, J.; Maruoka, K. J. Org. Chem. 2017, 82, 11865.
[45] Liu, Y. Synlett 2011, 1184.
[46] Dutta, U.; Maity, S.; Kancherla, R.; Maiti, D. Org. Lett. 2014, 16, 6302.
[47] Dutta, U.; Lupton, D. W.; Maiti, D. Org. Lett. 2016, 18, 860.
[48] (a) Oliver, D.; Dino, W.; Nils, T.; Nancy, G.; Francois, D. Org. Lett. 2014, 16, 4722.
(b) Pelletier, G.; Lie, S.; Mousseau, J. J.; Charette, A. B. Org. Lett. 2012, 14, 5464.
(c) Dan, L.; Joaquin, M. A.; Emil, B. L.; William, R. D. Chem. Eur. J. 2015, 21, 18122.
(d) Madabhushi, S.; Jillella, R.; R.Mallu, K. K.; Godala, K. R.; Vangipuram, V. S. Tetrahedron Lett. 2013, 54, 3993.
(e) Abe, H.; Suzuki, H. Bull. Chem. Soc. Jpn. 1999, 72, 787.

Outlines

/