Chinese Journal of Organic Chemistry >
Research Progress in 1, 8-Naphthalimide-Based Fluorescent Probes for Two-Photon Imaging
Received date: 2017-12-23
Revised date: 2018-01-18
Online published: 2018-02-06
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21472172, 21272212).
Fluorescent imaging technology has received great attention owing to their advantageous features in high sensitivity, relatively simple operations and real-time living cells, tissue and in vivo imaging. Compared with one-photon confocal imaging, two-photon confocal imaging offers considerable advantages such as high resolution, deep-tissue depth, lower tissue auto-fluorescence and so on. As typical D-π-A two-photon dyes, 1,8-naphthalimide dyes have wide application in two-photon imaging for enzyme, reactive carbon species, reactive oxygen species, reactive nitrogen species, biothiols and ions due to their advantages such as high photostability, large Stokes/anti-Stokes shifts. According to the mechanisms of intramolecular charge transfer, photoinduced electron transfer and fluorescence resonance energy transfer, etc., the application in two-photon imaging of 1,8-naphthalimide dyes is summarized and emphasized.
Xie Zhenda , Fu Manlin , Yin Biao , Zhu Qing . Research Progress in 1, 8-Naphthalimide-Based Fluorescent Probes for Two-Photon Imaging[J]. Chinese Journal of Organic Chemistry, 2018 , 38(6) : 1364 -1376 . DOI: 10.6023/cjoc201712031
[1] Li, X.; Gao, X.; Shi, W.; Ma, H. Chem.Rev. 2014, 114, 590.
[2] Chen, X.; Tian, X.; Shin, I.; Yoon, J. Chem. Soc.Rev. 2011, 40, 4783.
[3] Tang, Y.; Lee, D.; Wang, J.; Li, G.; Yu, J.; Lin, W.; Yoon, J. Chem.Soc.Rev. 2015, 44, 5003.
[4] Kikuchi, K. Chem.Soc.Rev. 2010, 39, 2048.
[5] Kim, H. M.; Cho, B. R. Chem.Rev. 2015, 115, 5014.
[6] Kim, D.; Ryu, H. G.; Ahn, K. H. Org.Biomol. Chem. 2014, 12, 4550.
[7] Huang, C.; Chen, S. Prog.Chem. 2017, 29, 1215(in Chinese). (黄池宝, 陈绍英, 化学进展, 2017, 29, 1215.)
[8] Loving, G.; Imperiali, B. J.Am.Chem. Soc. 2008. 130, 13630.
[9] Prezhdo, O. V.; Uspenskii, B. V.; Prezhdo, V. V.; Boszczyk, W.; Distanov, V. B. Dyes Pigm. 2009, 83, 324.
[10] Banerjee, S.; Veale, E. B.; Phelan, C. M.; Murphy, S. A.; Tocci, G. M.; Gillespie, L. J.; Frimannsson, D. O.; Kelly, J. M.; Gunnlaugsson, T. Chem. Soc.Rev. 2013, 42, 1601.
[11] Duke, R. M.; Veale, E. B.; Pfeffer, F. M.; Kruger, P. E.; Gunnlaugsson, T. Chem.Soc.Rev. 2010, 39, 3936.
[12] Qian, X.; Xiao, Y.; Xu, Y.; Guo, X.; Qian, J.; Zhu, W. Chem.Commun. 2010, 46, 6418.
[13] Alexiou, M. S.; Tychopoulos, V.; Ghorbanian, S.; Tyman, J. H. P.; Brown, R. G.; Brittain, P. I. J.Chem.Soc., Perkin Trans. 2 1990, 837.
[14] de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E. Chem.Rev. 1997, 97, 1515.
[15] Finkel, T.; Holbrook, N. J. Nature 2000, 408, 2392.
[16] Lippert, A. R.; Bittner, V.; Chang, C. J. Acc.Chem.Res. 2011, 44, 793.
[17] Srikun, D.; Miller, E. W.; Domaille, D. W.; Chang, C. J. J.Am. Chem.Soc. 2008, 130, 4596.
[18] Zdolsek, J.; Zhang, H.; Roberg, K.; Brunk, U. Free Radical Res. Commun. 1993, 18, 71.
[19] Ren, M.; Deng, B.; Wang, J. Y.; Kong, X.; Liu, Z. R.; Zhou, K.; He, L.; Lin, W. Biosens.Bioelectron. 2016, 79, 237.
[20] Xu, Z.; Liu, T.; Spring, D. R.; Cui, J. Org.Lett. 2013, 15, 2310.
[21] Winterbourn, C. C.; Hampton, M. B.; Livesey, J. H.; Kettle, A. J. J. Biol.Chem. 2006, 281, 39860.
[22] Pattison, D. I.; Davies, M. J. Biochemistry 2006, 45, 81522.
[23] Zhu, B.; Li, P.; Shu, W.; Wang, X.; Liu, C.; Wang, Y.; Wang, Z.; Wang, Y.; Tang, B. Anal.Chem. 2016, 88, 12532.
[24] Zhang, B.; Yang, X.; Zhang, R.; Liu, Y.; Ren, X.; Xian, M.; Ye Y., Zhao Y. Anal.Chem. 2017, 89, 10384.
[25] Wang, B.; Li, P.; Yu, F.; Song, P.; Sun, X.; Yang, S.; Lou, Z.; Han, K. Chem.Commun. 2013, 49, 1014.
[26] Lou, Z.; Li, P.; Han, K. Acc.Chem.Res. 2015, 48, 1358.
[27] Yu, F.; Li, P.; Wang, B.; Han, K. J.Am.Chem.Soc. 2013, 135, 7674.
[28] Yu, F.; Li, P.; Li, G.; Zhao, G.; Chu, T.; Han, K. J.Am. Chem.Soc. 2011, 133, 11030.
[29] Lou, Z.; Li, P.; Pan, Q.; Han, K. Chem.Commun. 2013, 49, 2445.
[30] Weidinger, A.; Kozlov, A. V. Biomolecules 2015, 5, 472.
[31] Radi, R. J.Biol.Chem. 2013, 288, 26464.
[32] Li, Y.; Xie, X.; Yang, X.; Li, M.; Jiao, X.; Sun, Y.; Wang, X.; Tang, B. Chem.Sci. 2017, 8, 4006.
[33] Brewer, T. F.; Chang, C. J. J.Am.Chem.Soc. 2015, 137, 10886.
[34] Roth, A.; Li, H.; Anorma, C.; Chan, J. J.Am.Chem. Soc. 2015, 137, 10890.
[35] Xie, Z.; Ge, J.; Zhang, H.; Bai, T.; He, S.; Ling, J.; Sun, H.; Zhu, Q. Sens.Actuators, B 2017, 241, 1050.
[36] Lin, J.-Y.; Zhang, M.-W.; Wang, J.-G.; Li, H.; Wei, H.-Y.; Liu, R.; Dai, G.; Liao, X. -X. Exp.Ther.Med. 2016, 11, 577.
[37] Lin, V. S.; Chen, W.; Xian, M.; Chang, C. J. Chem.Soc. Rev. 2015, 44, 4596.
[38] Liu, X. L.; Du, X. J.; Dai, C. G.; Song, Q. H. J.Org. Chem. 2014, 79, 9481.
[39] Kimura, H.; Shibuya, N.; Kimura, Y. Antioxid.Redox Signaling 2012, 17, 45.
[40] Fu, Y. J.; Yao, H. W.; Zhu, X. Y.; Guo, X. F.; Wang, H. Anal. Chim.Acta 2017, 994, 1.
[41] Zhou, Y.; Zhang, J.; Yoon, J. Chem.Rev. 2014, 114, 5511.
[42] Zhang, H.; Wu, Y.; You, J.; Cao, L.; Ding, S.; Jiang, K.; Wang, Z. Chin. J.Org.Chem. 2016, 36, 2559(in Chinese). (张惠敏, 吴彦城, 尤嘉宜, 曹梁, 丁沙, 蒋凯, 汪朝阳, 有机化学, 2016, 36, 2559.)
[43] Zhang, J. F.; Lim, C. S.; Bhuniya, S.; Cho, B. R.; Kim, J. S. Org. Lett. 2011, 13, 1190.
[44] Zhou, L.; Hu, S.; Wang, H.; Sun, H.; Zhang, X. Spectrochim.Acta, Part A 2016, 166, 25.
[45] Qian, L.; Li, L.; Yao, S. Q. Acc.Chem.Res. 2016, 49, 626.
[46] Dai, Z. R.; Ge, G. B.; Feng, L.; Ning, J.; Hu, L. H.; Jin, Q.; Wang, D. D.; Lv, X.; Dou, T. Y.; Cui, J. N.; Yang, L. J.Am.Chem.Soc. 2015. 137, 14488.
[47] Dai, Z. R.; Feng, L.; Jin, Q.; Cheng, H.; Li, Y.; Ning, J.; Yu, Y.; Ge, G. B.; Cui, J. N.; Yang, L. Chem.Sci. 2017, 8, 2795.
[48] Kaminsky, L. S.; Spivack, S. D. Mol.Aspects Med. 1999, 20, 70.
[49] Wei, C.; Caccavale, R. J.; Weyand, E. H.; Chen, S.; Iba, M. M. Cancer Lett. 2002, 178, 25.
[50] Satoh, T.; Hosokawa, M. J.Pestic.Sci. 2010, 35, 218.
[51] Pratt, S. E.; Durland-Busbice, S.; Shepard, R. L.; Donoho, G. P.; Starling, J. J.; Wickremsinhe, E. R.; Perkins, E. J.; Dantzig, A. H. Mol.Cancer Ther. 2013, 12, 481.
[52] Jin, Q.; Feng, L.; Wang, D. D.; Dai, Z. R.; Wang, P.; Zou, L. W.; Liu, Z. H.; Wang, J. Y.; Yu, Y.; Ge, G. B.; Cui, J. N.; Yang, L. ACS Appl.Mater. Interfaces 2015, 7, 28474.
[53] Hildebrandt, M.; Reutter, W.; Arck, P.; Rose, M.; Klapp, B. F. Clin. Sci. 2000, 99, 932.
[54] Zou, L. W.; Wang, P.; Qian, X. K.; Feng, L.; Yu, Y.; Wang, D. D.; Jin, Q.; Hou, J.; Liu, Z. H.; Ge, G. B.; Yang, L. Biosens.Bioelectron. 2017, 90, 283.
[55] Spergel, D. J.; Kruth, U.; Shimshek, D. R.; Sprengel, R.; Seeburg, P. H. Prog.Neurobiol. 2001, 63, 673.
[56] Kamiya, M.; Asanuma, D.; Kuranaga, E.; Takeishi, A.; Sakabe, M.; Miura, M.; Nagano, T.; Urano, Y. J.Am.Chem.Soc. 2011, 133, 12960.
[57] Asanuma, D.; Sakabe, M.; Kamiya, M.; Yamamoto, K.; Hiratake, J.; Ogawa, M.; Kosaka, N.; Choyke, P. L.; Nagano, T.; Kobayashi, H.; Urano, Y. Nat. Commun. 2015, 6, 6463.
[58] Zhang, X.; Wu, H.; Li, P.; Qu, Z.; Tan. M.; Han. K. Chem.Commun. 2016, 52, 8283.
[59] Hattori, A.; Matsumoto, H.; Mizutani, S.; Tsujimoto, M. J.Biochem. 1999, 125, 931.
[60] Shastri, N.; Schwab, S.; Serwold, T. Annu.Rev.Immunol. 2002, 20, 463.
[61] Xu, S.; Liu, H. W.; Hu, X. X.; Huan, S. Y.; Zhang, J.; Liu, Y. C.; Yuan, L.; Qu, F. L.; Zhang, X. B.; Tan, W. Anal.Chem. 2017, 89, 7641.
[62] Ueno, T.; Urano, Y.; Kojima, H.; Nagano, T. J.Am.Chem. Soc. 2006, 128, 10640.
[63] Ueno, T.; Urano, Y.; Setsukinai, K.; Takakusa, H.; Kojima, H.; Kikuchi, K.; Ohkubo, K.; Fukuzumi, S.; Nagano, T. J.Am.Chem.Soc. 2004, 126, 14079.
[64] Zhang, P.; Wang, H.; Zhang, D.; Zeng, X.; Zeng, R.; Xiao, L.; Tao, H.; Long, Y.; Yi, P.; Chen, J. Sens.Actuators, B 2018, 255, 2223.
[65] Cnop, M.; Foufelle, F.; Velloso, L. A. Trends Mol.Med. 2012, 18, 59.
[66] Harding, H. P.; Ron, D. Diabetes 2002, 51, S455.
[67] Xiao, H.; Liu, X.; Wu, C.; Wu, Y.; Li, P.; Guo, X.; Tang, B. Biosens. Bioelectron. 2017, 91, 449.
[68] Weishaupt, K. R.; Gomer, C. J.; Dougherty, T. J. Cancer Res. 1976, 36, 2326.
[69] Castano, A. P.; Mroz, P.; Hamblin, M. R. Nat.Rev.Cancer 2006, 6, 535.
[70] Liu, H. W.; Xu, S.; Wang, P.; Hu, X. X.; Zhang, J.; Yuan, L.; Zhang, X. B.; Tan, W. Chem.Commun. 2016, 52, 12330.
[71] da Silva, T. R. M.; de Freitas, J. R.; Silva, Q. C.; Figueira, C. P.; Roxo, E.; Leao, S. C.; de Freitas, L. A. R.; Veras, P. S. T. Infect.Immun. 2002, 70, 5628.
[72] Yu, H.; Xiao, Y.; Jin, L. J.Am.Chem.Soc. 2012, 134, 17486.
[73] Tang, Y.; Kong, X.; Xu, A.; Dong, B.; Lin, W. Angew.Chem., Int.Ed. 2016, 55, 3356.
[74] Lee, Y. H.; Tang, Y.; Verwilst, P.; Lin, W.; Kim, J. S. Chem. Commun. 2016, 52, 112472.
[75] Ren, W. X.; Han, J. Y.; Uhm, S.; Jang, Y. J.; Kang, C.; Kim, J. H.; Kim, J. S. Chem.Commun. 2015, 51, 10403.
[76] Matafome, P.; Sena, C.; Seica, R. Endocrine 2013, 43, 472.
[77] Singh, R.; Barden, A.; Mori, T.; Beilin, L. Diabetologia 2001, 44, 129.
[78] Tang, T.; Zhou, Y.; Chen, Y.; Li, M.; Feng, Y.; Wang, C.; Wang, S.; Zhou, X. Anal.Methods 2015, 7, 2386. 2
[79] Bulaj, G.; Kortemme, T.; Goldenberg, D. P. Biochemistry 1998, 37, 8965.
[80] Weerapana, E.; Wang, C.; Simon, G. M.; Richter, F.; Khare, S.; Dillon, M. B. D.; Bachovchin, D. A.; Mowen, K.; Baker, D.; Cravatt, B. F. Nature 2010, 468, 790.
[81] Zhu, X.; Li, Y.; Zan, W.; Zhang, J.; Chen, Z.; Liu, X.; Qi, F.; Yao, X.; Zhang, X.; Zhang, H. Photochem.Photobiol.Sci. 2016, 15, 412.
[82] Chen, X. Q.; Zhou, Y.; Peng, X. J.; Yoon, J. Y. Chem.Soc. Rev. 2010, 39, 2120.
[83] Wang, G. L.; Jiao, H. J.; Zhu, X. Y.; Dong, Y. M.; Li, Z. J. Analyst 2013, 138, 2000.
[84] Liu, Y.; Liu, Y.; Liu, W.; Liang, S. Spectrochim. Acta, Part A 2015, 137, 509.
[85] Yuan, L.; Lin, W.; Zheng, K.; Zhu, S. Acc.Chem.Res. 2013, 46, 1462.
[86] Yao, S.; Qian, Y. Sens.Actuators, B 2017, 252, 877.
[87] Xie, X.; Tang, F.; Shangguan, X.; Che, S.; Niu J.; Xiao, Y.; Wang, X.; Tang, B. Chem.Commun. 2017, 53, 6520.
[88] Lee, D. E.; Koo, H.; Sun, I. C.; Ryu, J. H.; Kim, K.; Kwon, I. C. Chem. Soc.Rev. 2012, 41, 2656.
[89] Yuan, Y.; Zhang, R.; Cheng, X.; Xu, S.; Liu, B. Chem.Sci. 2016, 7, 4245. Shen, W.; Ge, J.; He, S.; Zhang, R.; Zhao, C.; Fan, Y.; Yu, S.; Liu, B.; Zhu, Q. Chem.-Asian J. 2017, 12, 1532.
/
〈 |
|
〉 |