Chinese Journal of Organic Chemistry >
Synthesis and Fe3+ Sensing Properties of the Chemosensor Based on Functionalized Naphthalimide Schiff Base Derivative
Received date: 2017-11-01
Revised date: 2018-01-17
Online published: 2018-03-16
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21662031, 21661028, 21574104, 21262032).
A novel sensor molecule 2-hydroxyl-1-naldehyde-N-(4-aminophenyl)-1,8-naphthalimide (H1) based on functionalized naphthalimide Schiff Base derivative was synthesized. H1 was characterized by 1H NMR, 13C NMR and HRMS. Furthermore, its fluorescence properties were studied in dimethyl sulfoxide (DMSO)/H2O (V:V=7:3) solutions. Its maximum emission wavelength was 496 nm. The solution of H1 has yellow-green fluorescence under the UV lamp (365 nm). H1 showed fluorescence-colorimetric dual channel identification ability for Fe3+. With the addition of various metal ions into the H1 solution, only Fe3+ caused the fluorescence of the H1 quenching and the color disappeared. Other cations such as Ag+, Ca2+, Ba2+, Co2+, Ni2+, Cd2+, Pb2+, Zn2+, Cu2+, Mg2+ and Hg2+ could not induce similar response. The results of anti-disturbance experiment demonstrated that other cations can not interfere in the detection of Fe3+. H1 has good sensitivity for Fe3+, the fluorescence and UV-Vis detection limits of the H1 for Fe3+ are 3.04×10-8 and 2.71×10-6 mol·L-1, respectively. Finally, the test strips based on the H1 were prepared, which could conveniently and efficiently detect Fe3+ in water.
Zhang Youming , Han Bingbing , Lin Qi , Mao Pengpeng , Chen Jinfa , Yao Hong , Wei Taibao . Synthesis and Fe3+ Sensing Properties of the Chemosensor Based on Functionalized Naphthalimide Schiff Base Derivative[J]. Chinese Journal of Organic Chemistry, 2018 , 38(7) : 1800 -1805 . DOI: 10.6023/cjoc201711002
[1] Lin, Q.; Chen, P.; Liu, J.; Fu, Y.-P.; Zhang, Y.-M.; Wei, T.-B. Prog. Chem. 2013, 25, 1177 (in Chinese).
(林奇, 陈佩, 刘娟, 符永鹏, 张有明, 魏太保, 化学进展, 2013, 25, 1177.)
[2] Lin, Q.; Liu, X.; Chen, P.; Wei, T.-B.; Zhang, Y.-M. Prog. Chem. 2013, 25, 2131 (in Chinese).
(林奇, 刘昕, 陈佩, 魏太保, 张有明, 化学进展, 2013, 25, 2131.)
[3] Zhang, P.; Zhang, Y.-M.; Lin, Q.; Yao, H.; Wei, T.-B. Chin. J. Org. Chem. 2014, 34, 1300 (in Chinese).
(张鹏, 张有明, 林奇, 姚虹, 魏太保, 有机化学, 2014, 34, 1300.)
[4] Li, C.-W.; Yang, D.; Yin, B.; Guo, Y. Chin. J. Org. Chem. 2016, 36, 787 (in Chinese).
(李长伟, 杨栋, 尹兵, 郭媛, 有机化学, 2016, 36, 787.)
[5] Graham, R. C.; Hamilton, S. K.; Sahoo, S. K.; Narinder Singh, N. K.; Barry, W. H.; John, F. C. Chem. Soc. Rev. 2015, 44, 4415.
[6] Guo, X.-F.; Qian, X.-H.; Jia, L.-H. J. Am. Chem. Soc. 2004, 126, 2272.
[7] Koner, A. L.; Schatz, J.; Nau, W. M.; Pischel, U. J. Org. Chem. 2007, 72, 3889.
[8] Huang, X.-M.; Guo, Z.-Q.; Zhu, W.-H.; Xie, Y. S.; Tian, H. Chem. Commun. 2008, 5143.
[9] Reger, D. L.; Leitner, A.; Smith, M. D. Cryst. Growth Des. 2015, 15, 5637.
[10] Pischel, U.; Uzunova, V. D.; Remon, P.; Nau, W. M. Chem. Commun. 2010, 46, 2635.
[11] Ferreira, R.; Baleizao, C.; Munõz-Molina, J. M.; BerberanSantos, M. N.; Pischel, U. J. Phys. Chem. A 2011, 115, 1092.
[12] Nandhikonda, P.; Begaye, M. P.; Heagy, M. D. Tetrahedron Lett. 2009, 50, 2459.
[13] Jiang, G.; Wang, S.; Yuan, W.; Jiang, L.; Song, Y.; Tian, H.; Zhu, D.-B. Chem. Mater. 2006, 18, 235.
[14] Gu, P.-Y.; Lu, C.-J.; Ye, F.-L.; Ge, J.-F.; Xu, Q.-F.; Hu, Z.-J.; Li, N.-J.; Lu, J.-M. Chem. Commun. 2012, 48, 10234.
[15] Borisova, N. E.; Reshetova, M. D.; Ustynyuk, U. Y. Chem. Rev. 2007, 107, 46.
[16] Kamiya, Y.; Asanuma, H. Acc. Chem. Res. 2014, 47, 1663.
[17] Song, Q.-S.; Zhou, W.; Wu, X.-M.; Wu, F. Acta Chim. Sinica 2016, 74, 435 (in Chinese).
(宋秋生, 周稳, 吴新民, 吴凡, 化学学报, 2016, 74, 435.)
[18] Narayanaswamy, N.; Govindaraju, T. Sens. Actuators, B 2012, 161, 304.
[19] Chereddy, N.; Raju, M.; Nagaraju, P.; Krishnaswamy, V.; Korrapati, P.; Bangal, P.; Rao, V. Analyst 2014, 139, 6352.
[20] Bonda, D.; Lee, H.; Blair, J.; Zhu, X.; Perry, G.; Smith, M. Metallomics 2011, 3, 267.
[21] Gao, B.; Gong, W.-T.; Zhang, L.-Q.; Ye, J.-W.; Ning, G. Sens. Actuators, B 2012, 162, 391.
[22] Zhang, Y.-M.; Lin, Q.; Wei, T.-B.; Wang, D.-D.; Yao, H.; Wang, Y.-L. Chem. Commun. 2009, 447.
[23] Chen, C.; Wang, R.-Y.; Guo, L.-Q.; Fu, N.-Y. Org. Lett. 2011, 13, 1162.
[24] Lin, Q.; Zheng, F.; Liu, L.; Mao, P.-P.; Zhang, Y.-M.; Yao, H.; Wei, T.-B. RSC Adv. 2016, 6, 111928.
[25] Lin, Q.; Lu, T.-T.; Zhu, X.; Wei, T.-B.; Li, H.; Zhang, Y.-M. Chem. Sci. 2016, 7, 5341.
[26] Lin, Q.; Lu, T.-T.; Zhu, X.; Sun, B.; Yang, Q.-P.; Wei, T.-B.; Zhang, Y.-M. Chem. Commun. 2015, 51, 1635.
[27] Wei, T.-B.; Chen, J.-F.; Cheng, X.-B.; Li, H.; Han, B.-B.; Zhang, Y.-M.; Yao, H.; Lin, Q. Org. Chem. Front. 2017, 4, 210.
[28] Lin, Q.; Sun, B.; Yang, Q.-P.; Fu, Y.-P.; Zhu, X.; Wei, T.-B.; Zhang, Y.-M. Chem.-Eur. J. 2014, 20, 11457.
[29] Cheng, X.-B.; Li, H.; Zheng, F.; Lin, Q.; Yao, H.; Zhang, Y.-M.; Wei, T.-B. RSC Adv. 2016, 6, 20987.
[30] Lin, Q.; Zhong, K-P.; Zhu, J-H.; Ding, L.; Su, J-X.; Yao, H.; Wei, T.-B.; Zhang, Y.-M. Macromolecule 2017, 50, 7863.
/
〈 |
|
〉 |